cross section zero for ZW+ > W+ > cs~

Asked by diaspar1

MadGraph team hello,

In the SM, I get a zero result for the cs of the process

ZW+ > W+ > cs~,

(for example, for cs~ > W+ cs~ I don't get zero.)

I don't know what is the reason for this. Thank you very much in advance.

My decay width of W+ is zero, and the run_card.dat is

#*********************************************************************
# MadGraph5_aMC@NLO *
# *
# run_card.dat MadEvent *
# *
# This file is used to set the parameters of the run. *
# *
# Some notation/conventions: *
# *
# Lines starting with a '# ' are info or comments *
# *
# mind the format: value = variable ! comment *
#*********************************************************************
#
#*******************
# Running parameters
#*******************
#
#*********************************************************************
# Tag name for the run (one word) *
#*********************************************************************
  tag_1 = run_tag ! name of the run
#*********************************************************************
# Run to generate the grid pack *
#*********************************************************************
  .false. = gridpack !True = setting up the grid pack
#*********************************************************************
# Number of events and rnd seed *
# Warning: Do not generate more than 1M events in a single run *
# If you want to run Pythia, avoid more than 50k events in a run. *
#*********************************************************************
  0 = nevents ! Number of unweighted events requested
  0 = iseed ! rnd seed (0=assigned automatically=default))
#*********************************************************************
# Collider type and energy *
# lpp: 0=No PDF, 1=proton, -1=antiproton, 2=photon from proton, *
# 3=photon from electron *
#*********************************************************************
        1 = lpp1 ! beam 1 type
        1 = lpp2 ! beam 2 type
     1200 = ebeam1 ! beam 1 total energy in GeV
     1200 = ebeam2 ! beam 2 total energy in GeV
#*********************************************************************
# Beam polarization from -100 (left-handed) to 100 (right-handed) *
#*********************************************************************
        0 = polbeam1 ! beam polarization for beam 1
        0 = polbeam2 ! beam polarization for beam 2
#*********************************************************************
# PDF CHOICE: this automatically fixes also alpha_s and its evol. *
#*********************************************************************
 'nn23lo1' = pdlabel ! PDF set
 230000 = lhaid ! if pdlabel=lhapdf, this is the lhapdf number
#*********************************************************************
# Renormalization and factorization scales *
#*********************************************************************
 T = fixed_ren_scale ! if .true. use fixed ren scale
 T = fixed_fac_scale ! if .true. use fixed fac scale
 2400.0 = scale ! fixed ren scale
 91.1880 = dsqrt_q2fact1 ! fixed fact scale for pdf1
 91.1880 = dsqrt_q2fact2 ! fixed fact scale for pdf2
 1 = scalefact ! scale factor for event-by-event scales
#*********************************************************************
# Matching - Warning! ickkw > 1 is still beta
#*********************************************************************
 0 = ickkw ! 0 no matching, 1 MLM, 2 CKKW matching
 1 = highestmult ! for ickkw=2, highest mult group
 1 = ktscheme ! for ickkw=1, 1 Durham kT, 2 Pythia pTE
 1 = alpsfact ! scale factor for QCD emission vx
 F = chcluster ! cluster only according to channel diag
 F = pdfwgt ! for ickkw=1, perform pdf reweighting
 5 = asrwgtflavor ! highest quark flavor for a_s reweight
 T = clusinfo ! include clustering tag in output
 3.0 = lhe_version ! Change the way clustering information pass to shower.
#*********************************************************************
#**********************************************************
#
#**********************************************************
# Automatic ptj and mjj cuts if xqcut > 0
# (turn off for VBF and single top processes)
#**********************************************************
   T = auto_ptj_mjj ! Automatic setting of ptj and mjj
#**********************************************************
#
#**********************************
# BW cutoff (M+/-bwcutoff*Gamma)
#**********************************
  15 = bwcutoff ! (M+/-bwcutoff*Gamma)
#**********************************************************
# Apply pt/E/eta/dr/mij cuts on decay products or not
# (note that etmiss/ptll/ptheavy/ht/sorted cuts always apply)
#**********************************************************
   T = cut_decays ! Cut decay products
#*************************************************************
# Number of helicities to sum per event (0 = all helicities)
# 0 gives more stable result, but longer run time (needed for
# long decay chains e.g.).
# Use >=2 if most helicities contribute, e.g. pure QCD.
#*************************************************************
   0 = nhel ! Number of helicities used per event
#*******************
# Standard Cuts
#*******************
#
#*********************************************************************
# Minimum and maximum pt's (for max, -1 means no cut) *
#*********************************************************************
 0 = ptj ! minimum pt for the jets
 0 = ptb ! minimum pt for the b
 0 = pta ! minimum pt for the photons
 0 = ptl ! minimum pt for the charged leptons
 0 = misset ! minimum missing Et (sum of neutrino's momenta)
 0 = ptheavy ! minimum pt for one heavy final state
 0 = ptonium ! minimum pt for the quarkonium states
 1d5 = ptjmax ! maximum pt for the jets
 1d5 = ptbmax ! maximum pt for the b
 1d5 = ptamax ! maximum pt for the photons
 1d5 = ptlmax ! maximum pt for the charged leptons
 1d5 = missetmax ! maximum missing Et (sum of neutrino's momenta)
#*********************************************************************
# Minimum and maximum E's (in the center of mass frame) *
#*********************************************************************
  0 = ej ! minimum E for the jets
  0 = eb ! minimum E for the b
  0 = ea ! minimum E for the photons
  0 = el ! minimum E for the charged leptons
 1d5 = ejmax ! maximum E for the jets
 1d5 = ebmax ! maximum E for the b
 1d5 = eamax ! maximum E for the photons
 1d5 = elmax ! maximum E for the charged leptons
#*********************************************************************
# Maximum and minimum absolute rapidity (for max, -1 means no cut) *
#*********************************************************************
  1d5 = etaj ! max rap for the jets
  1d5 = etab ! max rap for the b
  1d5 = etaa ! max rap for the photons
  1d5 = etal ! max rap for the charged leptons
  1d5 = etaonium ! max rap for the quarkonium states
   0 = etajmin ! min rap for the jets
   0 = etabmin ! min rap for the b
   0 = etaamin ! min rap for the photons
   0 = etalmin ! main rap for the charged leptons
#*********************************************************************
# Minimum and maximum DeltaR distance *
#*********************************************************************
 0 = drjj ! min distance between jets
 0 = drbb ! min distance between b's
 0 = drll ! min distance between leptons
 0 = draa ! min distance between gammas
 0 = drbj ! min distance between b and jet
 0 = draj ! min distance between gamma and jet
 0 = drjl ! min distance between jet and lepton
 0 = drab ! min distance between gamma and b
 0 = drbl ! min distance between b and lepton
 0 = dral ! min distance between gamma and lepton
 1d2 = drjjmax ! max distance between jets
 1d2 = drbbmax ! max distance between b's
 1d2 = drllmax ! max distance between leptons
 1d2 = draamax ! max distance between gammas
 1d2 = drbjmax ! max distance between b and jet
 1d2 = drajmax ! max distance between gamma and jet
 1d2 = drjlmax ! max distance between jet and lepton
 1d2 = drabmax ! max distance between gamma and b
 1d2 = drblmax ! max distance between b and lepton
 1d2 = dralmax ! maxdistance between gamma and lepton
#*********************************************************************
# Minimum and maximum invariant mass for pairs *
# WARNING: for four lepton final state mmll cut require to have *
# different lepton masses for each flavor! *
#*********************************************************************
 0 = mmjj ! min invariant mass of a jet pair
 0 = mmbb ! min invariant mass of a b pair
 0 = mmaa ! min invariant mass of gamma gamma pair
 0 = mmll ! min invariant mass of l+l- (same flavour) lepton pair
 1d5 = mmjjmax ! max invariant mass of a jet pair
 1d5 = mmbbmax ! max invariant mass of a b pair
 1d5 = mmaamax ! max invariant mass of gamma gamma pair
 1d5 = mmllmax ! max invariant mass of l+l- (same flavour) lepton pair
#*********************************************************************
# Minimum and maximum invariant mass for all letpons *
#*********************************************************************
 0 = mmnl ! min invariant mass for all letpons (l+- and vl)
 1d5 = mmnlmax ! max invariant mass for all letpons (l+- and vl)
#*********************************************************************
# Minimum and maximum pt for 4-momenta sum of leptons *
#*********************************************************************
 0 = ptllmin ! Minimum pt for 4-momenta sum of leptons(l and vl)
 1d5 = ptllmax ! Maximum pt for 4-momenta sum of leptons(l and vl)
#*********************************************************************
# Inclusive cuts *
#*********************************************************************
 0 = xptj ! minimum pt for at least one jet
 0 = xptb ! minimum pt for at least one b
 0 = xpta ! minimum pt for at least one photon
 0 = xptl ! minimum pt for at least one charged lepton
#*********************************************************************
# Control the pt's of the jets sorted by pt *
#*********************************************************************
 0 = ptj1min ! minimum pt for the leading jet in pt
 0 = ptj2min ! minimum pt for the second jet in pt
 0 = ptj3min ! minimum pt for the third jet in pt
 0 = ptj4min ! minimum pt for the fourth jet in pt
 1d5 = ptj1max ! maximum pt for the leading jet in pt
 1d5 = ptj2max ! maximum pt for the second jet in pt
 1d5 = ptj3max ! maximum pt for the third jet in pt
 1d5 = ptj4max ! maximum pt for the fourth jet in pt
 0 = cutuse ! reject event if fails any (0) / all (1) jet pt cuts
#*********************************************************************
# Control the pt's of leptons sorted by pt *
#*********************************************************************
 0 = ptl1min ! minimum pt for the leading lepton in pt
 0 = ptl2min ! minimum pt for the second lepton in pt
 0 = ptl3min ! minimum pt for the third lepton in pt
 0 = ptl4min ! minimum pt for the fourth lepton in pt
 1d5 = ptl1max ! maximum pt for the leading lepton in pt
 1d5 = ptl2max ! maximum pt for the second lepton in pt
 1d5 = ptl3max ! maximum pt for the third lepton in pt
 1d5 = ptl4max ! maximum pt for the fourth lepton in pt
#*********************************************************************
# Control the Ht(k)=Sum of k leading jets *
#*********************************************************************
 0 = htjmin ! minimum jet HT=Sum(jet pt)
 1d5 = htjmax ! maximum jet HT=Sum(jet pt)
 0 = ihtmin !inclusive Ht for all partons (including b)
 1d5 = ihtmax !inclusive Ht for all partons (including b)
 0 = ht2min ! minimum Ht for the two leading jets
 0 = ht3min ! minimum Ht for the three leading jets
 0 = ht4min ! minimum Ht for the four leading jets
 1d5 = ht2max ! maximum Ht for the two leading jets
 1d5 = ht3max ! maximum Ht for the three leading jets
 1d5 = ht4max ! maximum Ht for the four leading jets
#***********************************************************************
# Photon-isolation cuts, according to hep-ph/9801442 *
# When ptgmin=0, all the other parameters are ignored *
# When ptgmin>0, pta and draj are not going to be used *
#***********************************************************************
   0 = ptgmin ! Min photon transverse momentum
 0.4 = R0gamma ! Radius of isolation code
 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442
 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442
 .true. = isoEM ! isolate photons from EM energy (photons and leptons)
#*********************************************************************
# WBF cuts *
#*********************************************************************
 0 = xetamin ! minimum rapidity for two jets in the WBF case
 0 = deltaeta ! minimum rapidity for two jets in the WBF case
#*********************************************************************
# KT DURHAM CUT *
#*********************************************************************
 -1 = ktdurham
 0.4 = dparameter
#*********************************************************************
# maximal pdg code for quark to be considered as a light jet *
# (otherwise b cuts are applied) *
#*********************************************************************
 4 = maxjetflavor ! Maximum jet pdg code
#*********************************************************************
# Jet measure cuts *
#*********************************************************************
 0 = xqcut ! minimum kt jet measure between partons
#*********************************************************************
#
#*********************************************************************
# Store info for systematics studies *
# WARNING: If use_syst is T, matched Pythia output is *
# meaningful ONLY if plotted taking matchscale *
# reweighting into account! *
#*********************************************************************
   F = use_syst ! Enable systematics studies
#
#**************************************
# Parameter of the systematics study
# will be used by SysCalc (if installed)
#**************************************
#
0.5 1 2 = sys_scalefact # factorization/renormalization scale factor
0.5 1 2 = sys_alpsfact # \alpha_s emission scale factors
30 50 = sys_matchscale # variation of merging scale
# PDF sets and number of members (0 or none for all members).
CT10nlo.LHgrid = sys_pdf # matching scales
# MSTW2008nlo68cl.LHgrid 1 = sys_pdf

Question information

Language:
English Edit question
Status:
Solved
For:
MadGraph5_aMC@NLO Edit question
Assignee:
No assignee Edit question
Solved by:
diaspar1
Solved:
Last query:
Last reply:
Revision history for this message
Olivier Mattelaer (olivier-mattelaer) said :
#1

Hi,

I'm confuse, which syntax did you use?
Could you put the content of the proc_card?

Cheers,

Olivier

Revision history for this message
diaspar1 (diaspar1) said :
#2

Olivier hello, and thanks.

I reinstalled MG and then got a result.

Howerver, for MG the result is different from the SM result in CalcHep.

For example, for the run_card.dat below I get 173.1 pb, while for CalcHep (Sqrt[s]=400, no cuts, W width=0) I get 192.5 pb.

I can't figure out why there is a difference.

Below are the run_card and param_card (all widths=0).

Again, thanks very much,

Aviad

#*********************************************************************
# MadGraph5_aMC@NLO *
# *
# run_card.dat MadEvent *
# *
# This file is used to set the parameters of the run. *
# *
# Some notation/conventions: *
# *
# Lines starting with a '# ' are info or comments *
# *
# mind the format: value = variable ! comment *
#*********************************************************************
#
#*******************
# Running parameters
#*******************
#
#*********************************************************************
# Tag name for the run (one word) *
#*********************************************************************
  tag_1 = run_tag ! name of the run
#*********************************************************************
# Run to generate the grid pack *
#*********************************************************************
  .false. = gridpack !True = setting up the grid pack
#*********************************************************************
# Number of events and rnd seed *
# Warning: Do not generate more than 1M events in a single run *
# If you want to run Pythia, avoid more than 50k events in a run. *
#*********************************************************************
      0 = nevents ! Number of unweighted events requested
      0 = iseed ! rnd seed (0=assigned automatically=default))
#*********************************************************************
# Collider type and energy *
# lpp: 0=No PDF, 1=proton, -1=antiproton, 2=photon from proton, *
# 3=photon from electron *
#*********************************************************************
        0 = lpp1 ! beam 1 type
        0 = lpp2 ! beam 2 type
     200 = ebeam1 ! beam 1 total energy in GeV
     200 = ebeam2 ! beam 2 total energy in GeV
#*********************************************************************
# Beam polarization from -100 (left-handed) to 100 (right-handed) *
#*********************************************************************
        0 = polbeam1 ! beam polarization for beam 1
        0 = polbeam2 ! beam polarization for beam 2
#*********************************************************************
# PDF CHOICE: this automatically fixes also alpha_s and its evol. *
#*********************************************************************
 'nn23lo1' = pdlabel ! PDF set
 230000 = lhaid ! if pdlabel=lhapdf, this is the lhapdf number
#*********************************************************************
# Renormalization and factorization scales *
#*********************************************************************
 T = fixed_ren_scale ! if .true. use fixed ren scale
 T = fixed_fac_scale ! if .true. use fixed fac scale
 400.0 = scale ! fixed ren scale
 91.1880 = dsqrt_q2fact1 ! fixed fact scale for pdf1
 91.1880 = dsqrt_q2fact2 ! fixed fact scale for pdf2
 1 = scalefact ! scale factor for event-by-event scales
#*********************************************************************
# Matching - Warning! ickkw > 1 is still beta
#*********************************************************************
 0 = ickkw ! 0 no matching, 1 MLM, 2 CKKW matching
 1 = highestmult ! for ickkw=2, highest mult group
 1 = ktscheme ! for ickkw=1, 1 Durham kT, 2 Pythia pTE
 1 = alpsfact ! scale factor for QCD emission vx
 F = chcluster ! cluster only according to channel diag
 T = pdfwgt ! for ickkw=1, perform pdf reweighting
 5 = asrwgtflavor ! highest quark flavor for a_s reweight
 T = clusinfo ! include clustering tag in output
 3.0 = lhe_version ! Change the way clustering information pass to shower.
#*********************************************************************
#**********************************************************
#
#**********************************************************
# Automatic ptj and mjj cuts if xqcut > 0
# (turn off for VBF and single top processes)
#**********************************************************
   T = auto_ptj_mjj ! Automatic setting of ptj and mjj
#**********************************************************
#
#**********************************
# BW cutoff (M+/-bwcutoff*Gamma)
#**********************************
  15 = bwcutoff ! (M+/-bwcutoff*Gamma)
#**********************************************************
# Apply pt/E/eta/dr/mij cuts on decay products or not
# (note that etmiss/ptll/ptheavy/ht/sorted cuts always apply)
#**********************************************************
   T = cut_decays ! Cut decay products
#*************************************************************
# Number of helicities to sum per event (0 = all helicities)
# 0 gives more stable result, but longer run time (needed for
# long decay chains e.g.).
# Use >=2 if most helicities contribute, e.g. pure QCD.
#*************************************************************
   0 = nhel ! Number of helicities used per event
#*******************
# Standard Cuts
#*******************
#
#*********************************************************************
# Minimum and maximum pt's (for max, -1 means no cut) *
#*********************************************************************
 0.0 = ptj ! minimum pt for the jets
 0.0 = ptb ! minimum pt for the b
 0.0 = pta ! minimum pt for the photons
 0.0 = ptl ! minimum pt for the charged leptons
 0.0 = misset ! minimum missing Et (sum of neutrino's momenta)
 0.0 = ptheavy ! minimum pt for one heavy final state
 0.0 = ptonium ! minimum pt for the quarkonium states
 1d5 = ptjmax ! maximum pt for the jets
 1d5 = ptbmax ! maximum pt for the b
 1d5 = ptamax ! maximum pt for the photons
 1d5 = ptlmax ! maximum pt for the charged leptons
 1d5 = missetmax ! maximum missing Et (sum of neutrino's momenta)
#*********************************************************************
# Minimum and maximum E's (in the center of mass frame) *
#*********************************************************************
  0 = ej ! minimum E for the jets
  0 = eb ! minimum E for the b
  0 = ea ! minimum E for the photons
  0 = el ! minimum E for the charged leptons
 1d5 = ejmax ! maximum E for the jets
 1d5 = ebmax ! maximum E for the b
 1d5 = eamax ! maximum E for the photons
 1d5 = elmax ! maximum E for the charged leptons
#*********************************************************************
# Maximum and minimum absolute rapidity (for max, -1 means no cut) *
#*********************************************************************
 1d5 = etaj ! max rap for the jets
 1d5 = etab ! max rap for the b
 1d5 = etaa ! max rap for the photons
 1d5 = etal ! max rap for the charged leptons
 1d5 = etaonium ! max rap for the quarkonium states
   0 = etajmin ! min rap for the jets
   0 = etabmin ! min rap for the b
   0 = etaamin ! min rap for the photons
   0 = etalmin ! main rap for the charged leptons
#*********************************************************************
# Minimum and maximum DeltaR distance *
#*********************************************************************
 0 = drjj ! min distance between jets
 0 = drbb ! min distance between b's
 0 = drll ! min distance between leptons
 0 = draa ! min distance between gammas
 0 = drbj ! min distance between b and jet
 0 = draj ! min distance between gamma and jet
 0 = drjl ! min distance between jet and lepton
 0 = drab ! min distance between gamma and b
 0 = drbl ! min distance between b and lepton
 0 = dral ! min distance between gamma and lepton
 1d5 = drjjmax ! max distance between jets
 1d5 = drbbmax ! max distance between b's
 1d5 = drllmax ! max distance between leptons
 1d5 = draamax ! max distance between gammas
 1d5 = drbjmax ! max distance between b and jet
 1d5 = drajmax ! max distance between gamma and jet
 1d5 = drjlmax ! max distance between jet and lepton
 1d5 = drabmax ! max distance between gamma and b
 1d5 = drblmax ! max distance between b and lepton
 1d5 = dralmax ! maxdistance between gamma and lepton
#*********************************************************************
# Minimum and maximum invariant mass for pairs *
# WARNING: for four lepton final state mmll cut require to have *
# different lepton masses for each flavor! *
#*********************************************************************
 0 = mmjj ! min invariant mass of a jet pair
 0 = mmbb ! min invariant mass of a b pair
 0 = mmaa ! min invariant mass of gamma gamma pair
 0 = mmll ! min invariant mass of l+l- (same flavour) lepton pair
 1d5 = mmjjmax ! max invariant mass of a jet pair
 1d5 = mmbbmax ! max invariant mass of a b pair
 1d5 = mmaamax ! max invariant mass of gamma gamma pair
 1d5 = mmllmax ! max invariant mass of l+l- (same flavour) lepton pair
#*********************************************************************
# Minimum and maximum invariant mass for all letpons *
#*********************************************************************
 0 = mmnl ! min invariant mass for all letpons (l+- and vl)
 -1 = mmnlmax ! max invariant mass for all letpons (l+- and vl)
#*********************************************************************
# Minimum and maximum pt for 4-momenta sum of leptons *
#*********************************************************************
 0 = ptllmin ! Minimum pt for 4-momenta sum of leptons(l and vl)
 1d5 = ptllmax ! Maximum pt for 4-momenta sum of leptons(l and vl)
#*********************************************************************
# Inclusive cuts *
#*********************************************************************
 0 = xptj ! minimum pt for at least one jet
 0 = xptb ! minimum pt for at least one b
 0 = xpta ! minimum pt for at least one photon
 0 = xptl ! minimum pt for at least one charged lepton
#*********************************************************************
# Control the pt's of the jets sorted by pt *
#*********************************************************************
 0 = ptj1min ! minimum pt for the leading jet in pt
 0 = ptj2min ! minimum pt for the second jet in pt
 0 = ptj3min ! minimum pt for the third jet in pt
 0 = ptj4min ! minimum pt for the fourth jet in pt
 1d5 = ptj1max ! maximum pt for the leading jet in pt
 1d5 = ptj2max ! maximum pt for the second jet in pt
 1d5 = ptj3max ! maximum pt for the third jet in pt
 1d5 = ptj4max ! maximum pt for the fourth jet in pt
 0 = cutuse ! reject event if fails any (0) / all (1) jet pt cuts
#*********************************************************************
# Control the pt's of leptons sorted by pt *
#*********************************************************************
 0 = ptl1min ! minimum pt for the leading lepton in pt
 0 = ptl2min ! minimum pt for the second lepton in pt
 0 = ptl3min ! minimum pt for the third lepton in pt
 0 = ptl4min ! minimum pt for the fourth lepton in pt
 1d5 = ptl1max ! maximum pt for the leading lepton in pt
 1d5 = ptl2max ! maximum pt for the second lepton in pt
 1d5 = ptl3max ! maximum pt for the third lepton in pt
 1d5 = ptl4max ! maximum pt for the fourth lepton in pt
#*********************************************************************
# Control the Ht(k)=Sum of k leading jets *
#*********************************************************************
 0 = htjmin ! minimum jet HT=Sum(jet pt)
 1d5 = htjmax ! maximum jet HT=Sum(jet pt)
 0 = ihtmin !inclusive Ht for all partons (including b)
 1d5 = ihtmax !inclusive Ht for all partons (including b)
 0 = ht2min ! minimum Ht for the two leading jets
 0 = ht3min ! minimum Ht for the three leading jets
 0 = ht4min ! minimum Ht for the four leading jets
 1d5 = ht2max ! maximum Ht for the two leading jets
 1d5 = ht3max ! maximum Ht for the three leading jets
 1d5 = ht4max ! maximum Ht for the four leading jets
#***********************************************************************
# Photon-isolation cuts, according to hep-ph/9801442 *
# When ptgmin=0, all the other parameters are ignored *
# When ptgmin>0, pta and draj are not going to be used *
#***********************************************************************
   0 = ptgmin ! Min photon transverse momentum
 0.4 = R0gamma ! Radius of isolation code
 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442
 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442
 .true. = isoEM ! isolate photons from EM energy (photons and leptons)
#*********************************************************************
# WBF cuts *
#*********************************************************************
 0 = xetamin ! minimum rapidity for two jets in the WBF case
 0 = deltaeta ! minimum rapidity for two jets in the WBF case
#*********************************************************************
# KT DURHAM CUT *
#*********************************************************************
 -1 = ktdurham
 0.4 = dparameter
#*********************************************************************
# maximal pdg code for quark to be considered as a light jet *
# (otherwise b cuts are applied) *
#*********************************************************************
 4 = maxjetflavor ! Maximum jet pdg code
#*********************************************************************
# Jet measure cuts *
#*********************************************************************
 0 = xqcut ! minimum kt jet measure between partons
#*********************************************************************
#
#*********************************************************************
# Store info for systematics studies *
# WARNING: If use_syst is T, matched Pythia output is *
# meaningful ONLY if plotted taking matchscale *
# reweighting into account! *
#*********************************************************************
   F = use_syst ! Enable systematics studies
#
#**************************************
# Parameter of the systematics study
# will be used by SysCalc (if installed)
#**************************************
#
0.5 1 2 = sys_scalefact # factorization/renormalization scale factor
0.5 1 2 = sys_alpsfact # \alpha_s emission scale factors
30 50 = sys_matchscale # variation of merging scale
# PDF sets and number of members (0 or none for all members).
CT10nlo.LHgrid = sys_pdf # matching scales
# MSTW2008nlo68cl.LHgrid 1 = sys_pdf

######################################################################
## PARAM_CARD AUTOMATICALY GENERATED BY MG5 FOLLOWING UFO MODEL ####
######################################################################
## ##
## Width set on Auto will be computed following the information ##
## present in the decay.py files of the model. ##
## See arXiv:1402.1178 for more details. ##
## ##
######################################################################

###################################
## INFORMATION FOR MASS
###################################
Block mass
    5 4.700000e+00 # MB
    6 1.730000e+02 # MT
   15 1.777000e+00 # MTA
   23 9.118800e+01 # MZ
   25 1.250000e+02 # MH
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
  1 0.000000 # d : 0.0
  2 0.000000 # u : 0.0
  3 0.000000 # s : 0.0
  4 0.000000 # c : 0.0
  11 0.000000 # e- : 0.0
  12 0.000000 # ve : 0.0
  13 0.000000 # mu- : 0.0
  14 0.000000 # vm : 0.0
  16 0.000000 # vt : 0.0
  21 0.000000 # g : 0.0
  22 0.000000 # a : 0.0
  24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2)))

###################################
## INFORMATION FOR SMINPUTS
###################################
Block sminputs
    1 1.325070e+02 # aEWM1
    2 1.166390e-05 # Gf
    3 1.180000e-01 # aS

###################################
## INFORMATION FOR YUKAWA
###################################
Block yukawa
    5 4.700000e+00 # ymb
    6 1.730000e+02 # ymt
   15 1.777000e+00 # ymtau

###################################
## INFORMATION FOR DECAY
###################################
DECAY 6 0.000000 # WT
DECAY 23 0.000000 # WZ
DECAY 24 0.000000 # WW
DECAY 25 0.000000 # WH
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
DECAY 1 0.000000 # d : 0.0
DECAY 2 0.000000 # u : 0.0
DECAY 3 0.000000 # s : 0.0
DECAY 4 0.000000 # c : 0.0
DECAY 5 0.000000 # b : 0.0
DECAY 11 0.000000 # e- : 0.0
DECAY 12 0.000000 # ve : 0.0
DECAY 13 0.000000 # mu- : 0.0
DECAY 14 0.000000 # vm : 0.0
DECAY 15 0.000000 # ta- : 0.0
DECAY 16 0.000000 # vt : 0.0
DECAY 21 0.000000 # g : 0.0
DECAY 22 0.000000 # a : 0.0

Revision history for this message
Olivier Mattelaer (olivier-mattelaer) said :
#3

Hi,

Did you check the correspondance for
1) mass of the light quark?
2) the ckm value
3) the electroweak scheme. (i.e the mass of the W/Z/alpha_EW/…)

Cheers,

Olivier

On 23 Mar 2015, at 23:01, Aviad <email address hidden> wrote:

> Question #264063 on MadGraph5_aMC@NLO changed:
> https://answers.launchpad.net/mg5amcnlo/+question/264063
>
> Status: Needs information => Open
>
> Aviad gave more information on the question:
> Olivier hello, and thanks.
>
> I reinstalled MG and then got a result.
>
> Howerver, for MG the result is different from the SM result in CalcHep.
>
> For example, for the run_card.dat below I get 173.1 pb, while for
> CalcHep (Sqrt[s]=400, no cuts, W width=0) I get 192.5 pb.
>
> I can't figure out why there is a difference.
>
> Below are the run_card and param_card (all widths=0).
>
> Again, thanks very much,
>
> Aviad
>
> #*********************************************************************
> # MadGraph5_aMC@NLO *
> # *
> # run_card.dat MadEvent *
> # *
> # This file is used to set the parameters of the run. *
> # *
> # Some notation/conventions: *
> # *
> # Lines starting with a '# ' are info or comments *
> # *
> # mind the format: value = variable ! comment *
> #*********************************************************************
> #
> #*******************
> # Running parameters
> #*******************
> #
> #*********************************************************************
> # Tag name for the run (one word) *
> #*********************************************************************
> tag_1 = run_tag ! name of the run
> #*********************************************************************
> # Run to generate the grid pack *
> #*********************************************************************
> .false. = gridpack !True = setting up the grid pack
> #*********************************************************************
> # Number of events and rnd seed *
> # Warning: Do not generate more than 1M events in a single run *
> # If you want to run Pythia, avoid more than 50k events in a run. *
> #*********************************************************************
> 0 = nevents ! Number of unweighted events requested
> 0 = iseed ! rnd seed (0=assigned automatically=default))
> #*********************************************************************
> # Collider type and energy *
> # lpp: 0=No PDF, 1=proton, -1=antiproton, 2=photon from proton, *
> # 3=photon from electron *
> #*********************************************************************
> 0 = lpp1 ! beam 1 type
> 0 = lpp2 ! beam 2 type
> 200 = ebeam1 ! beam 1 total energy in GeV
> 200 = ebeam2 ! beam 2 total energy in GeV
> #*********************************************************************
> # Beam polarization from -100 (left-handed) to 100 (right-handed) *
> #*********************************************************************
> 0 = polbeam1 ! beam polarization for beam 1
> 0 = polbeam2 ! beam polarization for beam 2
> #*********************************************************************
> # PDF CHOICE: this automatically fixes also alpha_s and its evol. *
> #*********************************************************************
> 'nn23lo1' = pdlabel ! PDF set
> 230000 = lhaid ! if pdlabel=lhapdf, this is the lhapdf number
> #*********************************************************************
> # Renormalization and factorization scales *
> #*********************************************************************
> T = fixed_ren_scale ! if .true. use fixed ren scale
> T = fixed_fac_scale ! if .true. use fixed fac scale
> 400.0 = scale ! fixed ren scale
> 91.1880 = dsqrt_q2fact1 ! fixed fact scale for pdf1
> 91.1880 = dsqrt_q2fact2 ! fixed fact scale for pdf2
> 1 = scalefact ! scale factor for event-by-event scales
> #*********************************************************************
> # Matching - Warning! ickkw > 1 is still beta
> #*********************************************************************
> 0 = ickkw ! 0 no matching, 1 MLM, 2 CKKW matching
> 1 = highestmult ! for ickkw=2, highest mult group
> 1 = ktscheme ! for ickkw=1, 1 Durham kT, 2 Pythia pTE
> 1 = alpsfact ! scale factor for QCD emission vx
> F = chcluster ! cluster only according to channel diag
> T = pdfwgt ! for ickkw=1, perform pdf reweighting
> 5 = asrwgtflavor ! highest quark flavor for a_s reweight
> T = clusinfo ! include clustering tag in output
> 3.0 = lhe_version ! Change the way clustering information pass to shower.
> #*********************************************************************
> #**********************************************************
> #
> #**********************************************************
> # Automatic ptj and mjj cuts if xqcut > 0
> # (turn off for VBF and single top processes)
> #**********************************************************
> T = auto_ptj_mjj ! Automatic setting of ptj and mjj
> #**********************************************************
> #
> #**********************************
> # BW cutoff (M+/-bwcutoff*Gamma)
> #**********************************
> 15 = bwcutoff ! (M+/-bwcutoff*Gamma)
> #**********************************************************
> # Apply pt/E/eta/dr/mij cuts on decay products or not
> # (note that etmiss/ptll/ptheavy/ht/sorted cuts always apply)
> #**********************************************************
> T = cut_decays ! Cut decay products
> #*************************************************************
> # Number of helicities to sum per event (0 = all helicities)
> # 0 gives more stable result, but longer run time (needed for
> # long decay chains e.g.).
> # Use >=2 if most helicities contribute, e.g. pure QCD.
> #*************************************************************
> 0 = nhel ! Number of helicities used per event
> #*******************
> # Standard Cuts
> #*******************
> #
> #*********************************************************************
> # Minimum and maximum pt's (for max, -1 means no cut) *
> #*********************************************************************
> 0.0 = ptj ! minimum pt for the jets
> 0.0 = ptb ! minimum pt for the b
> 0.0 = pta ! minimum pt for the photons
> 0.0 = ptl ! minimum pt for the charged leptons
> 0.0 = misset ! minimum missing Et (sum of neutrino's momenta)
> 0.0 = ptheavy ! minimum pt for one heavy final state
> 0.0 = ptonium ! minimum pt for the quarkonium states
> 1d5 = ptjmax ! maximum pt for the jets
> 1d5 = ptbmax ! maximum pt for the b
> 1d5 = ptamax ! maximum pt for the photons
> 1d5 = ptlmax ! maximum pt for the charged leptons
> 1d5 = missetmax ! maximum missing Et (sum of neutrino's momenta)
> #*********************************************************************
> # Minimum and maximum E's (in the center of mass frame) *
> #*********************************************************************
> 0 = ej ! minimum E for the jets
> 0 = eb ! minimum E for the b
> 0 = ea ! minimum E for the photons
> 0 = el ! minimum E for the charged leptons
> 1d5 = ejmax ! maximum E for the jets
> 1d5 = ebmax ! maximum E for the b
> 1d5 = eamax ! maximum E for the photons
> 1d5 = elmax ! maximum E for the charged leptons
> #*********************************************************************
> # Maximum and minimum absolute rapidity (for max, -1 means no cut) *
> #*********************************************************************
> 1d5 = etaj ! max rap for the jets
> 1d5 = etab ! max rap for the b
> 1d5 = etaa ! max rap for the photons
> 1d5 = etal ! max rap for the charged leptons
> 1d5 = etaonium ! max rap for the quarkonium states
> 0 = etajmin ! min rap for the jets
> 0 = etabmin ! min rap for the b
> 0 = etaamin ! min rap for the photons
> 0 = etalmin ! main rap for the charged leptons
> #*********************************************************************
> # Minimum and maximum DeltaR distance *
> #*********************************************************************
> 0 = drjj ! min distance between jets
> 0 = drbb ! min distance between b's
> 0 = drll ! min distance between leptons
> 0 = draa ! min distance between gammas
> 0 = drbj ! min distance between b and jet
> 0 = draj ! min distance between gamma and jet
> 0 = drjl ! min distance between jet and lepton
> 0 = drab ! min distance between gamma and b
> 0 = drbl ! min distance between b and lepton
> 0 = dral ! min distance between gamma and lepton
> 1d5 = drjjmax ! max distance between jets
> 1d5 = drbbmax ! max distance between b's
> 1d5 = drllmax ! max distance between leptons
> 1d5 = draamax ! max distance between gammas
> 1d5 = drbjmax ! max distance between b and jet
> 1d5 = drajmax ! max distance between gamma and jet
> 1d5 = drjlmax ! max distance between jet and lepton
> 1d5 = drabmax ! max distance between gamma and b
> 1d5 = drblmax ! max distance between b and lepton
> 1d5 = dralmax ! maxdistance between gamma and lepton
> #*********************************************************************
> # Minimum and maximum invariant mass for pairs *
> # WARNING: for four lepton final state mmll cut require to have *
> # different lepton masses for each flavor! *
> #*********************************************************************
> 0 = mmjj ! min invariant mass of a jet pair
> 0 = mmbb ! min invariant mass of a b pair
> 0 = mmaa ! min invariant mass of gamma gamma pair
> 0 = mmll ! min invariant mass of l+l- (same flavour) lepton pair
> 1d5 = mmjjmax ! max invariant mass of a jet pair
> 1d5 = mmbbmax ! max invariant mass of a b pair
> 1d5 = mmaamax ! max invariant mass of gamma gamma pair
> 1d5 = mmllmax ! max invariant mass of l+l- (same flavour) lepton pair
> #*********************************************************************
> # Minimum and maximum invariant mass for all letpons *
> #*********************************************************************
> 0 = mmnl ! min invariant mass for all letpons (l+- and vl)
> -1 = mmnlmax ! max invariant mass for all letpons (l+- and vl)
> #*********************************************************************
> # Minimum and maximum pt for 4-momenta sum of leptons *
> #*********************************************************************
> 0 = ptllmin ! Minimum pt for 4-momenta sum of leptons(l and vl)
> 1d5 = ptllmax ! Maximum pt for 4-momenta sum of leptons(l and vl)
> #*********************************************************************
> # Inclusive cuts *
> #*********************************************************************
> 0 = xptj ! minimum pt for at least one jet
> 0 = xptb ! minimum pt for at least one b
> 0 = xpta ! minimum pt for at least one photon
> 0 = xptl ! minimum pt for at least one charged lepton
> #*********************************************************************
> # Control the pt's of the jets sorted by pt *
> #*********************************************************************
> 0 = ptj1min ! minimum pt for the leading jet in pt
> 0 = ptj2min ! minimum pt for the second jet in pt
> 0 = ptj3min ! minimum pt for the third jet in pt
> 0 = ptj4min ! minimum pt for the fourth jet in pt
> 1d5 = ptj1max ! maximum pt for the leading jet in pt
> 1d5 = ptj2max ! maximum pt for the second jet in pt
> 1d5 = ptj3max ! maximum pt for the third jet in pt
> 1d5 = ptj4max ! maximum pt for the fourth jet in pt
> 0 = cutuse ! reject event if fails any (0) / all (1) jet pt cuts
> #*********************************************************************
> # Control the pt's of leptons sorted by pt *
> #*********************************************************************
> 0 = ptl1min ! minimum pt for the leading lepton in pt
> 0 = ptl2min ! minimum pt for the second lepton in pt
> 0 = ptl3min ! minimum pt for the third lepton in pt
> 0 = ptl4min ! minimum pt for the fourth lepton in pt
> 1d5 = ptl1max ! maximum pt for the leading lepton in pt
> 1d5 = ptl2max ! maximum pt for the second lepton in pt
> 1d5 = ptl3max ! maximum pt for the third lepton in pt
> 1d5 = ptl4max ! maximum pt for the fourth lepton in pt
> #*********************************************************************
> # Control the Ht(k)=Sum of k leading jets *
> #*********************************************************************
> 0 = htjmin ! minimum jet HT=Sum(jet pt)
> 1d5 = htjmax ! maximum jet HT=Sum(jet pt)
> 0 = ihtmin !inclusive Ht for all partons (including b)
> 1d5 = ihtmax !inclusive Ht for all partons (including b)
> 0 = ht2min ! minimum Ht for the two leading jets
> 0 = ht3min ! minimum Ht for the three leading jets
> 0 = ht4min ! minimum Ht for the four leading jets
> 1d5 = ht2max ! maximum Ht for the two leading jets
> 1d5 = ht3max ! maximum Ht for the three leading jets
> 1d5 = ht4max ! maximum Ht for the four leading jets
> #***********************************************************************
> # Photon-isolation cuts, according to hep-ph/9801442 *
> # When ptgmin=0, all the other parameters are ignored *
> # When ptgmin>0, pta and draj are not going to be used *
> #***********************************************************************
> 0 = ptgmin ! Min photon transverse momentum
> 0.4 = R0gamma ! Radius of isolation code
> 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442
> 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442
> .true. = isoEM ! isolate photons from EM energy (photons and leptons)
> #*********************************************************************
> # WBF cuts *
> #*********************************************************************
> 0 = xetamin ! minimum rapidity for two jets in the WBF case
> 0 = deltaeta ! minimum rapidity for two jets in the WBF case
> #*********************************************************************
> # KT DURHAM CUT *
> #*********************************************************************
> -1 = ktdurham
> 0.4 = dparameter
> #*********************************************************************
> # maximal pdg code for quark to be considered as a light jet *
> # (otherwise b cuts are applied) *
> #*********************************************************************
> 4 = maxjetflavor ! Maximum jet pdg code
> #*********************************************************************
> # Jet measure cuts *
> #*********************************************************************
> 0 = xqcut ! minimum kt jet measure between partons
> #*********************************************************************
> #
> #*********************************************************************
> # Store info for systematics studies *
> # WARNING: If use_syst is T, matched Pythia output is *
> # meaningful ONLY if plotted taking matchscale *
> # reweighting into account! *
> #*********************************************************************
> F = use_syst ! Enable systematics studies
> #
> #**************************************
> # Parameter of the systematics study
> # will be used by SysCalc (if installed)
> #**************************************
> #
> 0.5 1 2 = sys_scalefact # factorization/renormalization scale factor
> 0.5 1 2 = sys_alpsfact # \alpha_s emission scale factors
> 30 50 = sys_matchscale # variation of merging scale
> # PDF sets and number of members (0 or none for all members).
> CT10nlo.LHgrid = sys_pdf # matching scales
> # MSTW2008nlo68cl.LHgrid 1 = sys_pdf
>
>
> ######################################################################
> ## PARAM_CARD AUTOMATICALY GENERATED BY MG5 FOLLOWING UFO MODEL ####
> ######################################################################
> ## ##
> ## Width set on Auto will be computed following the information ##
> ## present in the decay.py files of the model. ##
> ## See arXiv:1402.1178 for more details. ##
> ## ##
> ######################################################################
>
> ###################################
> ## INFORMATION FOR MASS
> ###################################
> Block mass
> 5 4.700000e+00 # MB
> 6 1.730000e+02 # MT
> 15 1.777000e+00 # MTA
> 23 9.118800e+01 # MZ
> 25 1.250000e+02 # MH
> ## Dependent parameters, given by model restrictions.
> ## Those values should be edited following the
> ## analytical expression. MG5 ignores those values
> ## but they are important for interfacing the output of MG5
> ## to external program such as Pythia.
> 1 0.000000 # d : 0.0
> 2 0.000000 # u : 0.0
> 3 0.000000 # s : 0.0
> 4 0.000000 # c : 0.0
> 11 0.000000 # e- : 0.0
> 12 0.000000 # ve : 0.0
> 13 0.000000 # mu- : 0.0
> 14 0.000000 # vm : 0.0
> 16 0.000000 # vt : 0.0
> 21 0.000000 # g : 0.0
> 22 0.000000 # a : 0.0
> 24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2)))
>
> ###################################
> ## INFORMATION FOR SMINPUTS
> ###################################
> Block sminputs
> 1 1.325070e+02 # aEWM1
> 2 1.166390e-05 # Gf
> 3 1.180000e-01 # aS
>
> ###################################
> ## INFORMATION FOR YUKAWA
> ###################################
> Block yukawa
> 5 4.700000e+00 # ymb
> 6 1.730000e+02 # ymt
> 15 1.777000e+00 # ymtau
>
> ###################################
> ## INFORMATION FOR DECAY
> ###################################
> DECAY 6 0.000000 # WT
> DECAY 23 0.000000 # WZ
> DECAY 24 0.000000 # WW
> DECAY 25 0.000000 # WH
> ## Dependent parameters, given by model restrictions.
> ## Those values should be edited following the
> ## analytical expression. MG5 ignores those values
> ## but they are important for interfacing the output of MG5
> ## to external program such as Pythia.
> DECAY 1 0.000000 # d : 0.0
> DECAY 2 0.000000 # u : 0.0
> DECAY 3 0.000000 # s : 0.0
> DECAY 4 0.000000 # c : 0.0
> DECAY 5 0.000000 # b : 0.0
> DECAY 11 0.000000 # e- : 0.0
> DECAY 12 0.000000 # ve : 0.0
> DECAY 13 0.000000 # mu- : 0.0
> DECAY 14 0.000000 # vm : 0.0
> DECAY 15 0.000000 # ta- : 0.0
> DECAY 16 0.000000 # vt : 0.0
> DECAY 21 0.000000 # g : 0.0
> DECAY 22 0.000000 # a : 0.0
>
> --
> You received this question notification because you are an answer
> contact for MadGraph5_aMC@NLO.

Revision history for this message
diaspar1 (diaspar1) said :
#4

Hello, and thanks for your help.

I 'm sorry for not being accurate, as my problem is, in fact, that the process (W2 is a heavy, charged gauge boson in my model)

W+ Z > W2+ > c s~

gives different results in MG (0.00004 pb) and CalcHep (0.00007 pb) (no PDFs used), but the two separate decays

W2+ > W+ Z
W2+ > c s~

give identical results in MG and CH. In addition, the process

c s~ > W2+ > c s~

also gives identical result in MG and CH (0.01129 pb in sqrt[s]=400 GeV),

in contrast to the process

W+ Z > W2+ > W+ Z

which gives two differnt results.

My question is how can this be?

My param_card.dat and run_card.dat are

######################################################################
## PARAM_CARD AUTOMATICALY GENERATED BY MG5 FOLLOWING UFO MODEL ####
######################################################################
## ##
## Width set on Auto will be computed following the information ##
## present in the decay.py files of the model. ##
## See arXiv:1402.1178 for more details. ##
## ##
######################################################################

###################################
## INFORMATION FOR CKMBLOCK
###################################
Block ckmblock
    1 2.210000e-01 # s12
    2 4.100000e-02 # s23
    3 3.500000e-03 # s13

###################################
## INFORMATION FOR HIGGSBLOCK
###################################
Block higgsblock
    1 1.180000e-01 # lambda1
    2 2.000000e-01 # lambda2
    3 -2.340000e-01 # lambda3
    4 0.000000e+00 # lambda4
    5 5.000000e-01 # rho1
    6 5.000000e-02 # rho2
    7 1.250000e+00 # rho3
    8 1.250000e-01 # rho4
    9 5.000000e-01 # alpha1
   10 5.000000e-01 # alpha2
   11 5.000000e-01 # alpha3

###################################
## INFORMATION FOR KLRBLOCK
###################################
Block klrblock
    1 3.162278e-03 # VKe
    2 3.162278e-03 # VKmu
    3 3.162278e-03 # VKta

###################################
## INFORMATION FOR MASS
###################################
Block mass
    1 5.040000e-03 # MD
    2 2.550000e-03 # MU
    3 1.010000e-01 # MS
    4 1.270000e+00 # MC
    5 4.700000e+00 # MB
    6 1.720000e+02 # MT
   11 5.110000e-04 # Me
   12 1.000000e-08 # MN1
   13 1.056600e-01 # Mmu
   14 1.000000e-08 # MN2
   15 1.777000e+00 # Mta
   16 1.000000e-08 # MN3
   23 9.118760e+01 # MZ
   24 8.039900e+01 # MW
  9900012 1.000000e+02 # MN4
  9900014 1.000000e+02 # MN5
  9900016 1.000000e+02 # MN6
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
  21 0.000000 # g : 0.0
  22 0.000000 # a : 0.0
  25 120.110000 # h : sqrt__2*cmath.sqrt((lambda1 + eps__exp__2*(2*lambda1 + lambda3) + 2*eps*lambda4)*vev__exp__2)
  32 1999.995980 # z2 : (MW*MW2*sqrt__2)/(MZ*cmath.sqrt(1 - 2*sw__exp__2))
  34 1194.666628 # w2+ : (gw*vR)/sqrt__2
  35 1505.305776 # h2 : cmath.sqrt((alpha3*vR__exp__2)/cmath.sqrt(1 - eps__exp__2))/sqrt__2
  36 1479.551799 # h3 : cmath.sqrt(-2*(2*lambda2 - lambda3)*vev__exp__2 + (alpha3*vR__exp__2)/(2.*cmath.sqrt(1 - eps__exp__2)))
  37 902.159050 # h+ : cmath.sqrt(((-2*rho1 + rho3)*vR__exp__2)/2. + (alpha3*vev__exp__2*cmath.sqrt(1 - eps__exp__2))/4.)
  38 1507.100909 # hp2 : cmath.sqrt(alpha3*(vR__exp__2/cmath.sqrt(1 - eps__exp__2) + (vev__exp__2*cmath.sqrt(1 - eps__exp__2))/2.))/sqrt__2
  43 2543.200000 # h02 : sqrt__2*cmath.sqrt(rho1*vR__exp__2)
  44 899.156983 # h03 : cmath.sqrt((-2*rho1 + rho3)*vR__exp__2)/sqrt__2
  45 899.156983 # a02 : cmath.sqrt((-2*rho1 + rho3)*vR__exp__2)/sqrt__2
  61 905.151160 # hl++ : cmath.sqrt((-2*rho1 + rho3)*vR__exp__2 + alpha3*vev__exp__2*cmath.sqrt(1 - eps__exp__2))/sqrt__2
  62 810.926609 # hr++ : cmath.sqrt(2*rho2*vR__exp__2 + (alpha3*vev__exp__2*cmath.sqrt(1 - eps__exp__2))/2.)

###################################
## INFORMATION FOR MIXINGBLOCK
###################################
Block mixingblock
    1 1.000000e+00 # Wl11
    2 1.000000e+00 # Wl22
    3 1.000000e+00 # Wl33
    4 1.000000e+00 # WU11
    5 1.000000e+00 # WU22
    6 -1.000000e+00 # WU33
    7 1.000000e+00 # WD11
    8 1.000000e+00 # WD22
    9 1.000000e+00 # WD33

###################################
## INFORMATION FOR SMINPUTS
###################################
Block sminputs
    1 1.279000e+02 # aEWM1
    2 1.166370e-05 # Gf
    3 1.184000e-01 # aS

###################################
## INFORMATION FOR VEVS
###################################
Block vevs
    1 2.279100e+02 # k1
    2 2.543200e+03 # vR
    3 0.000000e+00 # vL

###################################
## INFORMATION FOR DECAY
###################################
DECAY 6 0.000000 # WT
DECAY 23 0.000000 # WZ
DECAY 24 0.000000 # WW
DECAY 25 0.000000 # WH
DECAY 32 0.000000 # WZ2
DECAY 34 0.000000 # WW2
DECAY 35 0.000000 # WH01
DECAY 36 0.000000 # WA01
DECAY 37 0.000000 # WHP1
DECAY 38 0.000000 # WHP2
DECAY 43 0.000000 # WH02
DECAY 44 0.000000 # WH03
DECAY 45 0.000000 # WA02
DECAY 61 0.000000 # WHPPL
DECAY 62 0.000000 # WHPPR
DECAY 9900012 0 # WN4
DECAY 9900014 0 # WN5
DECAY 9900016 0 # WN6
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
DECAY 1 0.000000 # d : 0.0
DECAY 2 0.000000 # u : 0.0
DECAY 3 0.000000 # s : 0.0
DECAY 4 0.000000 # c : 0.0
DECAY 5 0.000000 # b : 0.0
DECAY 11 0.000000 # e- : 0.0
DECAY 12 0.000000 # ve : 0.0
DECAY 13 0.000000 # mu- : 0.0
DECAY 14 0.000000 # vm : 0.0
DECAY 15 0.000000 # ta- : 0.0
DECAY 16 0.000000 # vt : 0.0
DECAY 21 0.000000 # g : 0.0
DECAY 22 0.000000 # a : 0.0
#===========================================================
# QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE)
#===========================================================

Block QNUMBERS 34 # w2+
        1 3 # 3 times electric charge
        2 3 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 32 # z2
        1 0 # 3 times electric charge
        2 3 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 0 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9900012 # n4
        1 0 # 3 times electric charge
        2 2 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 0 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9900014 # n5
        1 0 # 3 times electric charge
        2 2 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 0 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 9900016 # n6
        1 0 # 3 times electric charge
        2 2 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 0 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 35 # h2
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 0 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 43 # h02
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 0 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 44 # h03
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 0 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 37 # h+
        1 3 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 38 # hp2
        1 3 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 61 # hl++
        1 6 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 62 # hr++
        1 6 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 36 # h3
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 0 # Particle/Antiparticle distinction (0=own anti)
Block QNUMBERS 45 # a02
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 0 # Particle/Antiparticle distinction (0=own anti)

#*********************************************************************
# MadGraph5_aMC@NLO *
# *
# run_card.dat MadEvent *
# *
# This file is used to set the parameters of the run. *
# *
# Some notation/conventions: *
# *
# Lines starting with a '# ' are info or comments *
# *
# mind the format: value = variable ! comment *
#*********************************************************************
#
#*******************
# Running parameters
#*******************
#
#*********************************************************************
# Tag name for the run (one word) *
#*********************************************************************
  tag_1 = run_tag ! name of the run
#*********************************************************************
# Run to generate the grid pack *
#*********************************************************************
  .false. = gridpack !True = setting up the grid pack
#*********************************************************************
# Number of events and rnd seed *
# Warning: Do not generate more than 1M events in a single run *
# If you want to run Pythia, avoid more than 50k events in a run. *
#*********************************************************************
      10000 = nevents ! Number of unweighted events requested
      0 = iseed ! rnd seed (0=assigned automatically=default))
#*********************************************************************
# Collider type and energy *
# lpp: 0=No PDF, 1=proton, -1=antiproton, 2=photon from proton, *
# 3=photon from electron *
#*********************************************************************
        0 = lpp1 ! beam 1 type
        0 = lpp2 ! beam 2 type
     200 = ebeam1 ! beam 1 total energy in GeV
     200 = ebeam2 ! beam 2 total energy in GeV
#*********************************************************************
# Beam polarization from -100 (left-handed) to 100 (right-handed) *
#*********************************************************************
        0 = polbeam1 ! beam polarization for beam 1
        0 = polbeam2 ! beam polarization for beam 2
#*********************************************************************
# PDF CHOICE: this automatically fixes also alpha_s and its evol. *
#*********************************************************************
 'nn23lo1' = pdlabel ! PDF set
 230000 = lhaid ! if pdlabel=lhapdf, this is the lhapdf number
#*********************************************************************
# Renormalization and factorization scales *
#*********************************************************************
 T = fixed_ren_scale ! if .true. use fixed ren scale
 T = fixed_fac_scale ! if .true. use fixed fac scale
 400.0 = scale ! fixed ren scale
 91.1880 = dsqrt_q2fact1 ! fixed fact scale for pdf1
 91.1880 = dsqrt_q2fact2 ! fixed fact scale for pdf2
 1 = scalefact ! scale factor for event-by-event scales
#*********************************************************************
# Matching - Warning! ickkw > 1 is still beta
#*********************************************************************
 0 = ickkw ! 0 no matching, 1 MLM, 2 CKKW matching
 1 = highestmult ! for ickkw=2, highest mult group
 1 = ktscheme ! for ickkw=1, 1 Durham kT, 2 Pythia pTE
 1 = alpsfact ! scale factor for QCD emission vx
 F = chcluster ! cluster only according to channel diag
 T = pdfwgt ! for ickkw=1, perform pdf reweighting
 5 = asrwgtflavor ! highest quark flavor for a_s reweight
 T = clusinfo ! include clustering tag in output
 3.0 = lhe_version ! Change the way clustering information pass to shower.
#*********************************************************************
#**********************************************************
#
#**********************************************************
# Automatic ptj and mjj cuts if xqcut > 0
# (turn off for VBF and single top processes)
#**********************************************************
   T = auto_ptj_mjj ! Automatic setting of ptj and mjj
#**********************************************************
#
#**********************************
# BW cutoff (M+/-bwcutoff*Gamma)
#**********************************
  15 = bwcutoff ! (M+/-bwcutoff*Gamma)
#**********************************************************
# Apply pt/E/eta/dr/mij cuts on decay products or not
# (note that etmiss/ptll/ptheavy/ht/sorted cuts always apply)
#**********************************************************
   F = cut_decays ! Cut decay products
#*************************************************************
# Number of helicities to sum per event (0 = all helicities)
# 0 gives more stable result, but longer run time (needed for
# long decay chains e.g.).
# Use >=2 if most helicities contribute, e.g. pure QCD.
#*************************************************************
   0 = nhel ! Number of helicities used per event
#*******************
# Standard Cuts
#*******************
#
#*********************************************************************
# Minimum and maximum pt's (for max, -1 means no cut) *
#*********************************************************************
 0.0 = ptj ! minimum pt for the jets
 0.0 = ptb ! minimum pt for the b
 0.0 = pta ! minimum pt for the photons
 0.0 = ptl ! minimum pt for the charged leptons
 0.0 = misset ! minimum missing Et (sum of neutrino's momenta)
 0.0 = ptheavy ! minimum pt for one heavy final state
 0.0 = ptonium ! minimum pt for the quarkonium states
 1d5 = ptjmax ! maximum pt for the jets
 1d5 = ptbmax ! maximum pt for the b
 1d5 = ptamax ! maximum pt for the photons
 1d5 = ptlmax ! maximum pt for the charged leptons
 1d5 = missetmax ! maximum missing Et (sum of neutrino's momenta)
#*********************************************************************
# Minimum and maximum E's (in the center of mass frame) *
#*********************************************************************
  0 = ej ! minimum E for the jets
  0 = eb ! minimum E for the b
  0 = ea ! minimum E for the photons
  0 = el ! minimum E for the charged leptons
 1d5 = ejmax ! maximum E for the jets
 1d5 = ebmax ! maximum E for the b
 1d5 = eamax ! maximum E for the photons
 1d5 = elmax ! maximum E for the charged leptons
#*********************************************************************
# Maximum and minimum absolute rapidity (for max, -1 means no cut) *
#*********************************************************************
 1d5 = etaj ! max rap for the jets
 1d5 = etab ! max rap for the b
 1d5 = etaa ! max rap for the photons
 1d5 = etal ! max rap for the charged leptons
 1d5 = etaonium ! max rap for the quarkonium states
   0 = etajmin ! min rap for the jets
   0 = etabmin ! min rap for the b
   0 = etaamin ! min rap for the photons
   0 = etalmin ! main rap for the charged leptons
#*********************************************************************
# Minimum and maximum DeltaR distance *
#*********************************************************************
 0 = drjj ! min distance between jets
 0 = drbb ! min distance between b's
 0 = drll ! min distance between leptons
 0 = draa ! min distance between gammas
 0 = drbj ! min distance between b and jet
 0 = draj ! min distance between gamma and jet
 0 = drjl ! min distance between jet and lepton
 0 = drab ! min distance between gamma and b
 0 = drbl ! min distance between b and lepton
 0 = dral ! min distance between gamma and lepton
 1d5 = drjjmax ! max distance between jets
 1d5 = drbbmax ! max distance between b's
 1d5 = drllmax ! max distance between leptons
 1d5 = draamax ! max distance between gammas
 1d5 = drbjmax ! max distance between b and jet
 1d5 = drajmax ! max distance between gamma and jet
 1d5 = drjlmax ! max distance between jet and lepton
 1d5 = drabmax ! max distance between gamma and b
 1d5 = drblmax ! max distance between b and lepton
 1d5 = dralmax ! maxdistance between gamma and lepton
#*********************************************************************
# Minimum and maximum invariant mass for pairs *
# WARNING: for four lepton final state mmll cut require to have *
# different lepton masses for each flavor! *
#*********************************************************************
 0 = mmjj ! min invariant mass of a jet pair
 0 = mmbb ! min invariant mass of a b pair
 0 = mmaa ! min invariant mass of gamma gamma pair
 0 = mmll ! min invariant mass of l+l- (same flavour) lepton pair
 1d5 = mmjjmax ! max invariant mass of a jet pair
 1d5 = mmbbmax ! max invariant mass of a b pair
 1d5 = mmaamax ! max invariant mass of gamma gamma pair
 1d5 = mmllmax ! max invariant mass of l+l- (same flavour) lepton pair
#*********************************************************************
# Minimum and maximum invariant mass for all letpons *
#*********************************************************************
 0 = mmnl ! min invariant mass for all letpons (l+- and vl)
 -1 = mmnlmax ! max invariant mass for all letpons (l+- and vl)
#*********************************************************************
# Minimum and maximum pt for 4-momenta sum of leptons *
#*********************************************************************
 0 = ptllmin ! Minimum pt for 4-momenta sum of leptons(l and vl)
 1d5 = ptllmax ! Maximum pt for 4-momenta sum of leptons(l and vl)
#*********************************************************************
# Inclusive cuts *
#*********************************************************************
 0 = xptj ! minimum pt for at least one jet
 0 = xptb ! minimum pt for at least one b
 0 = xpta ! minimum pt for at least one photon
 0 = xptl ! minimum pt for at least one charged lepton
#*********************************************************************
# Control the pt's of the jets sorted by pt *
#*********************************************************************
 0 = ptj1min ! minimum pt for the leading jet in pt
 0 = ptj2min ! minimum pt for the second jet in pt
 0 = ptj3min ! minimum pt for the third jet in pt
 0 = ptj4min ! minimum pt for the fourth jet in pt
 1d5 = ptj1max ! maximum pt for the leading jet in pt
 1d5 = ptj2max ! maximum pt for the second jet in pt
 1d5 = ptj3max ! maximum pt for the third jet in pt
 1d5 = ptj4max ! maximum pt for the fourth jet in pt
 0 = cutuse ! reject event if fails any (0) / all (1) jet pt cuts
#*********************************************************************
# Control the pt's of leptons sorted by pt *
#*********************************************************************
 0 = ptl1min ! minimum pt for the leading lepton in pt
 0 = ptl2min ! minimum pt for the second lepton in pt
 0 = ptl3min ! minimum pt for the third lepton in pt
 0 = ptl4min ! minimum pt for the fourth lepton in pt
 1d5 = ptl1max ! maximum pt for the leading lepton in pt
 1d5 = ptl2max ! maximum pt for the second lepton in pt
 1d5 = ptl3max ! maximum pt for the third lepton in pt
 1d5 = ptl4max ! maximum pt for the fourth lepton in pt
#*********************************************************************
# Control the Ht(k)=Sum of k leading jets *
#*********************************************************************
 0 = htjmin ! minimum jet HT=Sum(jet pt)
 1d5 = htjmax ! maximum jet HT=Sum(jet pt)
 0 = ihtmin !inclusive Ht for all partons (including b)
 1d5 = ihtmax !inclusive Ht for all partons (including b)
 0 = ht2min ! minimum Ht for the two leading jets
 0 = ht3min ! minimum Ht for the three leading jets
 0 = ht4min ! minimum Ht for the four leading jets
 1d5 = ht2max ! maximum Ht for the two leading jets
 1d5 = ht3max ! maximum Ht for the three leading jets
 1d5 = ht4max ! maximum Ht for the four leading jets
#***********************************************************************
# Photon-isolation cuts, according to hep-ph/9801442 *
# When ptgmin=0, all the other parameters are ignored *
# When ptgmin>0, pta and draj are not going to be used *
#***********************************************************************
   0 = ptgmin ! Min photon transverse momentum
 0.4 = R0gamma ! Radius of isolation code
 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442
 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442
 .true. = isoEM ! isolate photons from EM energy (photons and leptons)
#*********************************************************************
# WBF cuts *
#*********************************************************************
 0 = xetamin ! minimum rapidity for two jets in the WBF case
 0 = deltaeta ! minimum rapidity for two jets in the WBF case
#*********************************************************************
# KT DURHAM CUT *
#*********************************************************************
 -1 = ktdurham
 0.4 = dparameter
#*********************************************************************
# maximal pdg code for quark to be considered as a light jet *
# (otherwise b cuts are applied) *
#*********************************************************************
 4 = maxjetflavor ! Maximum jet pdg code
#*********************************************************************
# Jet measure cuts *
#*********************************************************************
 0 = xqcut ! minimum kt jet measure between partons
#*********************************************************************
#
#*********************************************************************
# Store info for systematics studies *
# WARNING: If use_syst is T, matched Pythia output is *
# meaningful ONLY if plotted taking matchscale *
# reweighting into account! *
#*********************************************************************
   F = use_syst ! Enable systematics studies
#
#**************************************
# Parameter of the systematics study
# will be used by SysCalc (if installed)
#**************************************
#
0.5 1 2 = sys_scalefact # factorization/renormalization scale factor
0.5 1 2 = sys_alpsfact # \alpha_s emission scale factors
30 50 = sys_matchscale # variation of merging scale
# PDF sets and number of members (0 or none for all members).
CT10nlo.LHgrid = sys_pdf # matching scales
# MSTW2008nlo68cl.LHgrid 1 = sys_pdf

Revision history for this message
Olivier Mattelaer (olivier-mattelaer) said :
#5

Hi,

I would bet that this is linked to the fact that your initial state is massive.
I would compare the momenta of the initial particle for each generator to check
if both code use the same convention for the initial momentum in that case.

Cheers,

Olivier

On 24 Mar 2015, at 01:36, Aviad <email address hidden> wrote:

> Question #264063 on MadGraph5_aMC@NLO changed:
> https://answers.launchpad.net/mg5amcnlo/+question/264063
>
> Status: Answered => Open
>
> Aviad is still having a problem:
> Hello, and thanks for your help.
>
> I 'm sorry for not being accurate, as my problem is, in fact, that the
> process (W2 is a heavy, charged gauge boson in my model)
>
> W+ Z > W2+ > c s~
>
> gives different results in MG (0.00004 pb) and CalcHep (0.00007 pb) (no
> PDFs used), but the two separate decays
>
> W2+ > W+ Z
> W2+ > c s~
>
> give identical results in MG and CH. In addition, the process
>
> c s~ > W2+ > c s~
>
> also gives identical result in MG and CH (0.01129 pb in sqrt[s]=400
> GeV),
>
> in contrast to the process
>
> W+ Z > W2+ > W+ Z
>
> which gives two differnt results.
>
> My question is how can this be?
>
> My param_card.dat and run_card.dat are
>
>
> ######################################################################
> ## PARAM_CARD AUTOMATICALY GENERATED BY MG5 FOLLOWING UFO MODEL ####
> ######################################################################
> ## ##
> ## Width set on Auto will be computed following the information ##
> ## present in the decay.py files of the model. ##
> ## See arXiv:1402.1178 for more details. ##
> ## ##
> ######################################################################
>
> ###################################
> ## INFORMATION FOR CKMBLOCK
> ###################################
> Block ckmblock
> 1 2.210000e-01 # s12
> 2 4.100000e-02 # s23
> 3 3.500000e-03 # s13
>
> ###################################
> ## INFORMATION FOR HIGGSBLOCK
> ###################################
> Block higgsblock
> 1 1.180000e-01 # lambda1
> 2 2.000000e-01 # lambda2
> 3 -2.340000e-01 # lambda3
> 4 0.000000e+00 # lambda4
> 5 5.000000e-01 # rho1
> 6 5.000000e-02 # rho2
> 7 1.250000e+00 # rho3
> 8 1.250000e-01 # rho4
> 9 5.000000e-01 # alpha1
> 10 5.000000e-01 # alpha2
> 11 5.000000e-01 # alpha3
>
> ###################################
> ## INFORMATION FOR KLRBLOCK
> ###################################
> Block klrblock
> 1 3.162278e-03 # VKe
> 2 3.162278e-03 # VKmu
> 3 3.162278e-03 # VKta
>
> ###################################
> ## INFORMATION FOR MASS
> ###################################
> Block mass
> 1 5.040000e-03 # MD
> 2 2.550000e-03 # MU
> 3 1.010000e-01 # MS
> 4 1.270000e+00 # MC
> 5 4.700000e+00 # MB
> 6 1.720000e+02 # MT
> 11 5.110000e-04 # Me
> 12 1.000000e-08 # MN1
> 13 1.056600e-01 # Mmu
> 14 1.000000e-08 # MN2
> 15 1.777000e+00 # Mta
> 16 1.000000e-08 # MN3
> 23 9.118760e+01 # MZ
> 24 8.039900e+01 # MW
> 9900012 1.000000e+02 # MN4
> 9900014 1.000000e+02 # MN5
> 9900016 1.000000e+02 # MN6
> ## Dependent parameters, given by model restrictions.
> ## Those values should be edited following the
> ## analytical expression. MG5 ignores those values
> ## but they are important for interfacing the output of MG5
> ## to external program such as Pythia.
> 21 0.000000 # g : 0.0
> 22 0.000000 # a : 0.0
> 25 120.110000 # h : sqrt__2*cmath.sqrt((lambda1 + eps__exp__2*(2*lambda1 + lambda3) + 2*eps*lambda4)*vev__exp__2)
> 32 1999.995980 # z2 : (MW*MW2*sqrt__2)/(MZ*cmath.sqrt(1 - 2*sw__exp__2))
> 34 1194.666628 # w2+ : (gw*vR)/sqrt__2
> 35 1505.305776 # h2 : cmath.sqrt((alpha3*vR__exp__2)/cmath.sqrt(1 - eps__exp__2))/sqrt__2
> 36 1479.551799 # h3 : cmath.sqrt(-2*(2*lambda2 - lambda3)*vev__exp__2 + (alpha3*vR__exp__2)/(2.*cmath.sqrt(1 - eps__exp__2)))
> 37 902.159050 # h+ : cmath.sqrt(((-2*rho1 + rho3)*vR__exp__2)/2. + (alpha3*vev__exp__2*cmath.sqrt(1 - eps__exp__2))/4.)
> 38 1507.100909 # hp2 : cmath.sqrt(alpha3*(vR__exp__2/cmath.sqrt(1 - eps__exp__2) + (vev__exp__2*cmath.sqrt(1 - eps__exp__2))/2.))/sqrt__2
> 43 2543.200000 # h02 : sqrt__2*cmath.sqrt(rho1*vR__exp__2)
> 44 899.156983 # h03 : cmath.sqrt((-2*rho1 + rho3)*vR__exp__2)/sqrt__2
> 45 899.156983 # a02 : cmath.sqrt((-2*rho1 + rho3)*vR__exp__2)/sqrt__2
> 61 905.151160 # hl++ : cmath.sqrt((-2*rho1 + rho3)*vR__exp__2 + alpha3*vev__exp__2*cmath.sqrt(1 - eps__exp__2))/sqrt__2
> 62 810.926609 # hr++ : cmath.sqrt(2*rho2*vR__exp__2 + (alpha3*vev__exp__2*cmath.sqrt(1 - eps__exp__2))/2.)
>
> ###################################
> ## INFORMATION FOR MIXINGBLOCK
> ###################################
> Block mixingblock
> 1 1.000000e+00 # Wl11
> 2 1.000000e+00 # Wl22
> 3 1.000000e+00 # Wl33
> 4 1.000000e+00 # WU11
> 5 1.000000e+00 # WU22
> 6 -1.000000e+00 # WU33
> 7 1.000000e+00 # WD11
> 8 1.000000e+00 # WD22
> 9 1.000000e+00 # WD33
>
> ###################################
> ## INFORMATION FOR SMINPUTS
> ###################################
> Block sminputs
> 1 1.279000e+02 # aEWM1
> 2 1.166370e-05 # Gf
> 3 1.184000e-01 # aS
>
> ###################################
> ## INFORMATION FOR VEVS
> ###################################
> Block vevs
> 1 2.279100e+02 # k1
> 2 2.543200e+03 # vR
> 3 0.000000e+00 # vL
>
> ###################################
> ## INFORMATION FOR DECAY
> ###################################
> DECAY 6 0.000000 # WT
> DECAY 23 0.000000 # WZ
> DECAY 24 0.000000 # WW
> DECAY 25 0.000000 # WH
> DECAY 32 0.000000 # WZ2
> DECAY 34 0.000000 # WW2
> DECAY 35 0.000000 # WH01
> DECAY 36 0.000000 # WA01
> DECAY 37 0.000000 # WHP1
> DECAY 38 0.000000 # WHP2
> DECAY 43 0.000000 # WH02
> DECAY 44 0.000000 # WH03
> DECAY 45 0.000000 # WA02
> DECAY 61 0.000000 # WHPPL
> DECAY 62 0.000000 # WHPPR
> DECAY 9900012 0 # WN4
> DECAY 9900014 0 # WN5
> DECAY 9900016 0 # WN6
> ## Dependent parameters, given by model restrictions.
> ## Those values should be edited following the
> ## analytical expression. MG5 ignores those values
> ## but they are important for interfacing the output of MG5
> ## to external program such as Pythia.
> DECAY 1 0.000000 # d : 0.0
> DECAY 2 0.000000 # u : 0.0
> DECAY 3 0.000000 # s : 0.0
> DECAY 4 0.000000 # c : 0.0
> DECAY 5 0.000000 # b : 0.0
> DECAY 11 0.000000 # e- : 0.0
> DECAY 12 0.000000 # ve : 0.0
> DECAY 13 0.000000 # mu- : 0.0
> DECAY 14 0.000000 # vm : 0.0
> DECAY 15 0.000000 # ta- : 0.0
> DECAY 16 0.000000 # vt : 0.0
> DECAY 21 0.000000 # g : 0.0
> DECAY 22 0.000000 # a : 0.0
> #===========================================================
> # QUANTUM NUMBERS OF NEW STATE(S) (NON SM PDG CODE)
> #===========================================================
>
> Block QNUMBERS 34 # w2+
> 1 3 # 3 times electric charge
> 2 3 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 1 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 32 # z2
> 1 0 # 3 times electric charge
> 2 3 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 0 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 9900012 # n4
> 1 0 # 3 times electric charge
> 2 2 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 0 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 9900014 # n5
> 1 0 # 3 times electric charge
> 2 2 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 0 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 9900016 # n6
> 1 0 # 3 times electric charge
> 2 2 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 0 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 35 # h2
> 1 0 # 3 times electric charge
> 2 1 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 0 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 43 # h02
> 1 0 # 3 times electric charge
> 2 1 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 0 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 44 # h03
> 1 0 # 3 times electric charge
> 2 1 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 0 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 37 # h+
> 1 3 # 3 times electric charge
> 2 1 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 1 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 38 # hp2
> 1 3 # 3 times electric charge
> 2 1 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 1 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 61 # hl++
> 1 6 # 3 times electric charge
> 2 1 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 1 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 62 # hr++
> 1 6 # 3 times electric charge
> 2 1 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 1 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 36 # h3
> 1 0 # 3 times electric charge
> 2 1 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 0 # Particle/Antiparticle distinction (0=own anti)
> Block QNUMBERS 45 # a02
> 1 0 # 3 times electric charge
> 2 1 # number of spin states (2S+1)
> 3 1 # colour rep (1: singlet, 3: triplet, 8: octet)
> 4 0 # Particle/Antiparticle distinction (0=own anti)
>
>
>
> #*********************************************************************
> # MadGraph5_aMC@NLO *
> # *
> # run_card.dat MadEvent *
> # *
> # This file is used to set the parameters of the run. *
> # *
> # Some notation/conventions: *
> # *
> # Lines starting with a '# ' are info or comments *
> # *
> # mind the format: value = variable ! comment *
> #*********************************************************************
> #
> #*******************
> # Running parameters
> #*******************
> #
> #*********************************************************************
> # Tag name for the run (one word) *
> #*********************************************************************
> tag_1 = run_tag ! name of the run
> #*********************************************************************
> # Run to generate the grid pack *
> #*********************************************************************
> .false. = gridpack !True = setting up the grid pack
> #*********************************************************************
> # Number of events and rnd seed *
> # Warning: Do not generate more than 1M events in a single run *
> # If you want to run Pythia, avoid more than 50k events in a run. *
> #*********************************************************************
> 10000 = nevents ! Number of unweighted events requested
> 0 = iseed ! rnd seed (0=assigned automatically=default))
> #*********************************************************************
> # Collider type and energy *
> # lpp: 0=No PDF, 1=proton, -1=antiproton, 2=photon from proton, *
> # 3=photon from electron *
> #*********************************************************************
> 0 = lpp1 ! beam 1 type
> 0 = lpp2 ! beam 2 type
> 200 = ebeam1 ! beam 1 total energy in GeV
> 200 = ebeam2 ! beam 2 total energy in GeV
> #*********************************************************************
> # Beam polarization from -100 (left-handed) to 100 (right-handed) *
> #*********************************************************************
> 0 = polbeam1 ! beam polarization for beam 1
> 0 = polbeam2 ! beam polarization for beam 2
> #*********************************************************************
> # PDF CHOICE: this automatically fixes also alpha_s and its evol. *
> #*********************************************************************
> 'nn23lo1' = pdlabel ! PDF set
> 230000 = lhaid ! if pdlabel=lhapdf, this is the lhapdf number
> #*********************************************************************
> # Renormalization and factorization scales *
> #*********************************************************************
> T = fixed_ren_scale ! if .true. use fixed ren scale
> T = fixed_fac_scale ! if .true. use fixed fac scale
> 400.0 = scale ! fixed ren scale
> 91.1880 = dsqrt_q2fact1 ! fixed fact scale for pdf1
> 91.1880 = dsqrt_q2fact2 ! fixed fact scale for pdf2
> 1 = scalefact ! scale factor for event-by-event scales
> #*********************************************************************
> # Matching - Warning! ickkw > 1 is still beta
> #*********************************************************************
> 0 = ickkw ! 0 no matching, 1 MLM, 2 CKKW matching
> 1 = highestmult ! for ickkw=2, highest mult group
> 1 = ktscheme ! for ickkw=1, 1 Durham kT, 2 Pythia pTE
> 1 = alpsfact ! scale factor for QCD emission vx
> F = chcluster ! cluster only according to channel diag
> T = pdfwgt ! for ickkw=1, perform pdf reweighting
> 5 = asrwgtflavor ! highest quark flavor for a_s reweight
> T = clusinfo ! include clustering tag in output
> 3.0 = lhe_version ! Change the way clustering information pass to shower.
> #*********************************************************************
> #**********************************************************
> #
> #**********************************************************
> # Automatic ptj and mjj cuts if xqcut > 0
> # (turn off for VBF and single top processes)
> #**********************************************************
> T = auto_ptj_mjj ! Automatic setting of ptj and mjj
> #**********************************************************
> #
> #**********************************
> # BW cutoff (M+/-bwcutoff*Gamma)
> #**********************************
> 15 = bwcutoff ! (M+/-bwcutoff*Gamma)
> #**********************************************************
> # Apply pt/E/eta/dr/mij cuts on decay products or not
> # (note that etmiss/ptll/ptheavy/ht/sorted cuts always apply)
> #**********************************************************
> F = cut_decays ! Cut decay products
> #*************************************************************
> # Number of helicities to sum per event (0 = all helicities)
> # 0 gives more stable result, but longer run time (needed for
> # long decay chains e.g.).
> # Use >=2 if most helicities contribute, e.g. pure QCD.
> #*************************************************************
> 0 = nhel ! Number of helicities used per event
> #*******************
> # Standard Cuts
> #*******************
> #
> #*********************************************************************
> # Minimum and maximum pt's (for max, -1 means no cut) *
> #*********************************************************************
> 0.0 = ptj ! minimum pt for the jets
> 0.0 = ptb ! minimum pt for the b
> 0.0 = pta ! minimum pt for the photons
> 0.0 = ptl ! minimum pt for the charged leptons
> 0.0 = misset ! minimum missing Et (sum of neutrino's momenta)
> 0.0 = ptheavy ! minimum pt for one heavy final state
> 0.0 = ptonium ! minimum pt for the quarkonium states
> 1d5 = ptjmax ! maximum pt for the jets
> 1d5 = ptbmax ! maximum pt for the b
> 1d5 = ptamax ! maximum pt for the photons
> 1d5 = ptlmax ! maximum pt for the charged leptons
> 1d5 = missetmax ! maximum missing Et (sum of neutrino's momenta)
> #*********************************************************************
> # Minimum and maximum E's (in the center of mass frame) *
> #*********************************************************************
> 0 = ej ! minimum E for the jets
> 0 = eb ! minimum E for the b
> 0 = ea ! minimum E for the photons
> 0 = el ! minimum E for the charged leptons
> 1d5 = ejmax ! maximum E for the jets
> 1d5 = ebmax ! maximum E for the b
> 1d5 = eamax ! maximum E for the photons
> 1d5 = elmax ! maximum E for the charged leptons
> #*********************************************************************
> # Maximum and minimum absolute rapidity (for max, -1 means no cut) *
> #*********************************************************************
> 1d5 = etaj ! max rap for the jets
> 1d5 = etab ! max rap for the b
> 1d5 = etaa ! max rap for the photons
> 1d5 = etal ! max rap for the charged leptons
> 1d5 = etaonium ! max rap for the quarkonium states
> 0 = etajmin ! min rap for the jets
> 0 = etabmin ! min rap for the b
> 0 = etaamin ! min rap for the photons
> 0 = etalmin ! main rap for the charged leptons
> #*********************************************************************
> # Minimum and maximum DeltaR distance *
> #*********************************************************************
> 0 = drjj ! min distance between jets
> 0 = drbb ! min distance between b's
> 0 = drll ! min distance between leptons
> 0 = draa ! min distance between gammas
> 0 = drbj ! min distance between b and jet
> 0 = draj ! min distance between gamma and jet
> 0 = drjl ! min distance between jet and lepton
> 0 = drab ! min distance between gamma and b
> 0 = drbl ! min distance between b and lepton
> 0 = dral ! min distance between gamma and lepton
> 1d5 = drjjmax ! max distance between jets
> 1d5 = drbbmax ! max distance between b's
> 1d5 = drllmax ! max distance between leptons
> 1d5 = draamax ! max distance between gammas
> 1d5 = drbjmax ! max distance between b and jet
> 1d5 = drajmax ! max distance between gamma and jet
> 1d5 = drjlmax ! max distance between jet and lepton
> 1d5 = drabmax ! max distance between gamma and b
> 1d5 = drblmax ! max distance between b and lepton
> 1d5 = dralmax ! maxdistance between gamma and lepton
> #*********************************************************************
> # Minimum and maximum invariant mass for pairs *
> # WARNING: for four lepton final state mmll cut require to have *
> # different lepton masses for each flavor! *
> #*********************************************************************
> 0 = mmjj ! min invariant mass of a jet pair
> 0 = mmbb ! min invariant mass of a b pair
> 0 = mmaa ! min invariant mass of gamma gamma pair
> 0 = mmll ! min invariant mass of l+l- (same flavour) lepton pair
> 1d5 = mmjjmax ! max invariant mass of a jet pair
> 1d5 = mmbbmax ! max invariant mass of a b pair
> 1d5 = mmaamax ! max invariant mass of gamma gamma pair
> 1d5 = mmllmax ! max invariant mass of l+l- (same flavour) lepton pair
> #*********************************************************************
> # Minimum and maximum invariant mass for all letpons *
> #*********************************************************************
> 0 = mmnl ! min invariant mass for all letpons (l+- and vl)
> -1 = mmnlmax ! max invariant mass for all letpons (l+- and vl)
> #*********************************************************************
> # Minimum and maximum pt for 4-momenta sum of leptons *
> #*********************************************************************
> 0 = ptllmin ! Minimum pt for 4-momenta sum of leptons(l and vl)
> 1d5 = ptllmax ! Maximum pt for 4-momenta sum of leptons(l and vl)
> #*********************************************************************
> # Inclusive cuts *
> #*********************************************************************
> 0 = xptj ! minimum pt for at least one jet
> 0 = xptb ! minimum pt for at least one b
> 0 = xpta ! minimum pt for at least one photon
> 0 = xptl ! minimum pt for at least one charged lepton
> #*********************************************************************
> # Control the pt's of the jets sorted by pt *
> #*********************************************************************
> 0 = ptj1min ! minimum pt for the leading jet in pt
> 0 = ptj2min ! minimum pt for the second jet in pt
> 0 = ptj3min ! minimum pt for the third jet in pt
> 0 = ptj4min ! minimum pt for the fourth jet in pt
> 1d5 = ptj1max ! maximum pt for the leading jet in pt
> 1d5 = ptj2max ! maximum pt for the second jet in pt
> 1d5 = ptj3max ! maximum pt for the third jet in pt
> 1d5 = ptj4max ! maximum pt for the fourth jet in pt
> 0 = cutuse ! reject event if fails any (0) / all (1) jet pt cuts
> #*********************************************************************
> # Control the pt's of leptons sorted by pt *
> #*********************************************************************
> 0 = ptl1min ! minimum pt for the leading lepton in pt
> 0 = ptl2min ! minimum pt for the second lepton in pt
> 0 = ptl3min ! minimum pt for the third lepton in pt
> 0 = ptl4min ! minimum pt for the fourth lepton in pt
> 1d5 = ptl1max ! maximum pt for the leading lepton in pt
> 1d5 = ptl2max ! maximum pt for the second lepton in pt
> 1d5 = ptl3max ! maximum pt for the third lepton in pt
> 1d5 = ptl4max ! maximum pt for the fourth lepton in pt
> #*********************************************************************
> # Control the Ht(k)=Sum of k leading jets *
> #*********************************************************************
> 0 = htjmin ! minimum jet HT=Sum(jet pt)
> 1d5 = htjmax ! maximum jet HT=Sum(jet pt)
> 0 = ihtmin !inclusive Ht for all partons (including b)
> 1d5 = ihtmax !inclusive Ht for all partons (including b)
> 0 = ht2min ! minimum Ht for the two leading jets
> 0 = ht3min ! minimum Ht for the three leading jets
> 0 = ht4min ! minimum Ht for the four leading jets
> 1d5 = ht2max ! maximum Ht for the two leading jets
> 1d5 = ht3max ! maximum Ht for the three leading jets
> 1d5 = ht4max ! maximum Ht for the four leading jets
> #***********************************************************************
> # Photon-isolation cuts, according to hep-ph/9801442 *
> # When ptgmin=0, all the other parameters are ignored *
> # When ptgmin>0, pta and draj are not going to be used *
> #***********************************************************************
> 0 = ptgmin ! Min photon transverse momentum
> 0.4 = R0gamma ! Radius of isolation code
> 1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442
> 1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442
> .true. = isoEM ! isolate photons from EM energy (photons and leptons)
> #*********************************************************************
> # WBF cuts *
> #*********************************************************************
> 0 = xetamin ! minimum rapidity for two jets in the WBF case
> 0 = deltaeta ! minimum rapidity for two jets in the WBF case
> #*********************************************************************
> # KT DURHAM CUT *
> #*********************************************************************
> -1 = ktdurham
> 0.4 = dparameter
> #*********************************************************************
> # maximal pdg code for quark to be considered as a light jet *
> # (otherwise b cuts are applied) *
> #*********************************************************************
> 4 = maxjetflavor ! Maximum jet pdg code
> #*********************************************************************
> # Jet measure cuts *
> #*********************************************************************
> 0 = xqcut ! minimum kt jet measure between partons
> #*********************************************************************
> #
> #*********************************************************************
> # Store info for systematics studies *
> # WARNING: If use_syst is T, matched Pythia output is *
> # meaningful ONLY if plotted taking matchscale *
> # reweighting into account! *
> #*********************************************************************
> F = use_syst ! Enable systematics studies
> #
> #**************************************
> # Parameter of the systematics study
> # will be used by SysCalc (if installed)
> #**************************************
> #
> 0.5 1 2 = sys_scalefact # factorization/renormalization scale factor
> 0.5 1 2 = sys_alpsfact # \alpha_s emission scale factors
> 30 50 = sys_matchscale # variation of merging scale
> # PDF sets and number of members (0 or none for all members).
> CT10nlo.LHgrid = sys_pdf # matching scales
> # MSTW2008nlo68cl.LHgrid 1 = sys_pdf
>
> --
> You received this question notification because you are an answer
> contact for MadGraph5_aMC@NLO.

Revision history for this message
diaspar1 (diaspar1) said :
#6

Olivier hello,

Indeed, I noticed that as I increase the energy, the gap between the programs decreases.

I consider your advise a solution to my problem, and I would like to thank you for your quick response and good will.

Sincerely,
Aviad