Range-v3
Range algorithms, views, and actions for the Standard Library
ranges::inner_product_fn Struct Reference

Public Member Functions

template<typename I1 , typename S1 , typename I2 , typename S2 , typename T , typename BOp1 = plus, typename BOp2 = multiplies, typename P1 = identity, typename P2 = identity>
operator() (I1 begin1, S1 end1, I2 begin2, S2 end2, T init, BOp1 bop1=BOp1{}, BOp2 bop2=BOp2{}, P1 proj1=P1{}, P2 proj2=P2{}) const
 
template<typename I1 , typename S1 , typename I2 , typename T , typename BOp1 = plus, typename BOp2 = multiplies, typename P1 = identity, typename P2 = identity>
operator() (I1 begin1, S1 end1, I2 begin2, T init, BOp1 bop1=BOp1{}, BOp2 bop2=BOp2{}, P1 proj1=P1{}, P2 proj2=P2{}) const
 
template<typename Rng1 , typename I2Ref , typename T , typename BOp1 = plus, typename BOp2 = multiplies, typename P1 = identity, typename P2 = identity, typename I1 = iterator_t<Rng1>, typename I2 = uncvref_t<I2Ref>>
operator() (Rng1 &&rng1, I2Ref &&begin2, T init, BOp1 bop1=BOp1{}, BOp2 bop2=BOp2{}, P1 proj1=P1{}, P2 proj2=P2{}) const
 
template<typename Rng1 , typename Rng2 , typename T , typename BOp1 = plus, typename BOp2 = multiplies, typename P1 = identity, typename P2 = identity, typename I1 = iterator_t<Rng1>, typename I2 = iterator_t<Rng2>>
operator() (Rng1 &&rng1, Rng2 &&rng2, T init, BOp1 bop1=BOp1{}, BOp2 bop2=BOp2{}, P1 proj1=P1{}, P2 proj2=P2{}) const
 

Member Function Documentation

◆ operator()() [1/4]

template<typename I1 , typename S1 , typename I2 , typename S2 , typename T , typename BOp1 = plus, typename BOp2 = multiplies, typename P1 = identity, typename P2 = identity>
T ranges::inner_product_fn::operator() ( I1  begin1,
S1  end1,
I2  begin2,
S2  end2,
init,
BOp1  bop1 = BOp1{},
BOp2  bop2 = BOp2{},
P1  proj1 = P1{},
P2  proj2 = P2{} 
) const
Precondition
requires sentinel_for<S1, I1> && sentinel_for<S2, I2> && inner_product_constraints<I1, I2, T, BOp1, BOp2, P1, P2>

◆ operator()() [2/4]

template<typename I1 , typename S1 , typename I2 , typename T , typename BOp1 = plus, typename BOp2 = multiplies, typename P1 = identity, typename P2 = identity>
T ranges::inner_product_fn::operator() ( I1  begin1,
S1  end1,
I2  begin2,
init,
BOp1  bop1 = BOp1{},
BOp2  bop2 = BOp2{},
P1  proj1 = P1{},
P2  proj2 = P2{} 
) const
Precondition
requires sentinel_for<S1, I1> && inner_product_constraints<I1, I2, T, BOp1, BOp2, P1, P2>

◆ operator()() [3/4]

template<typename Rng1 , typename I2Ref , typename T , typename BOp1 = plus, typename BOp2 = multiplies, typename P1 = identity, typename P2 = identity, typename I1 = iterator_t<Rng1>, typename I2 = uncvref_t<I2Ref>>
T ranges::inner_product_fn::operator() ( Rng1 &&  rng1,
I2Ref &&  begin2,
init,
BOp1  bop1 = BOp1{},
BOp2  bop2 = BOp2{},
P1  proj1 = P1{},
P2  proj2 = P2{} 
) const
Precondition
requires range<Rng1> && inner_product_constraints<I1, I2, T, BOp1, BOp2, P1, P2>

◆ operator()() [4/4]

template<typename Rng1 , typename Rng2 , typename T , typename BOp1 = plus, typename BOp2 = multiplies, typename P1 = identity, typename P2 = identity, typename I1 = iterator_t<Rng1>, typename I2 = iterator_t<Rng2>>
T ranges::inner_product_fn::operator() ( Rng1 &&  rng1,
Rng2 &&  rng2,
init,
BOp1  bop1 = BOp1{},
BOp2  bop2 = BOp2{},
P1  proj1 = P1{},
P2  proj2 = P2{} 
) const
Precondition
requires range<Rng1> && range<Rng2> && inner_product_constraints<I1, I2, T, BOp1, BOp2, P1, P2>