llvm-3.0 3.0-4ubuntu1 source package in Ubuntu

Changelog

llvm-3.0 (3.0-4ubuntu1) precise; urgency=low

  * Define a gnueabihf environment for armhf.

llvm-3.0 (3.0-4) unstable; urgency=low

  * Fix a problem in the commit 3.0-3 (patches were still not applied)
    quilt was explicitly needed
 -- Matthias Klose <email address hidden>   Sun, 11 Dec 2011 17:08:08 +0100

Upload details

Uploaded by:
Matthias Klose
Uploaded to:
Precise
Original maintainer:
LLVM Packaging Team
Architectures:
any all
Section:
devel
Urgency:
Low Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Precise release main devel

Downloads

File Size SHA-256 Checksum
llvm-3.0_3.0.orig.tar.gz 9.9 MiB 519eb11d3499ce99c6ffdb8718651fc91425ed7690eac91c8d6853474f7c0477
llvm-3.0_3.0-4ubuntu1.debian.tar.gz 31.1 KiB 65ac6f34ffde8ec525512d5b7f3b44d3c4cb878762fcda6bc12bac70ff7b7660
llvm-3.0_3.0-4ubuntu1.dsc 1.9 KiB b5a4ecec09c7d1270d6940e3f30db2c33ae20d500b6f9ab8c84b60f037c4c73b

Available diffs

View changes file

Binary packages built by this source

libllvm-3.0-ocaml-dev: Low-Level Virtual Machine (LLVM), bindings for OCaml

 The Low-Level Virtual Machine (LLVM) is a collection of libraries and
 tools that make it easy to build compilers, optimizers, Just-In-Time
 code generators, and many other compiler-related programs. LLVM
 uses a single, language-independent virtual instruction set both
 as an offline code representation (to communicate code between
 compiler phases and to run-time systems) and as the compiler internal
 representation (to analyze and transform programs). This persistent
 code representation allows a common set of sophisticated compiler
 techniques to be applied at compile-time, link-time, install-time,
 run-time, or "idle-time" (between program runs).
 .
 This package provides the OCaml bindings to develop applications using llvm.

libllvm3.0: No summary available for libllvm3.0 in ubuntu quantal.

No description available for libllvm3.0 in ubuntu quantal.

llvm-3.0: Low-Level Virtual Machine (LLVM)

 The Low-Level Virtual Machine (LLVM) is a collection of libraries and
 tools that make it easy to build compilers, optimizers, Just-In-Time
 code generators, and many other compiler-related programs. LLVM
 uses a single, language-independent virtual instruction set both
 as an offline code representation (to communicate code between
 compiler phases and to run-time systems) and as the compiler internal
 representation (to analyze and transform programs). This persistent
 code representation allows a common set of sophisticated compiler
 techniques to be applied at compile-time, link-time, install-time,
 run-time, or "idle-time" (between program runs).
 .
 The strengths of the LLVM infrastructure are its extremely
 simple design (which makes it easy to understand and use),
 source-language independence, powerful mid-level optimizer, automated
 compiler debugging support, extensibility, and its stability and
 reliability. LLVM is currently being used to host a wide variety of
 academic research projects and commercial projects. LLVM includes C
 and C++ front-ends, a front-end for a Forth-like language (Stacker),
 a young scheme front-end, and Java support is in development. LLVM can
 generate code for X86, SparcV9, PowerPC, or it can emit C code.
 .
 LLVM is the key component of the clang compiler and the gcc plugin called
 dragonegg.

llvm-3.0-dev: No summary available for llvm-3.0-dev in ubuntu quantal.

No description available for llvm-3.0-dev in ubuntu quantal.

llvm-3.0-doc: Low-Level Virtual Machine (LLVM), documentation

 The Low-Level Virtual Machine (LLVM) is a collection of libraries and
 tools that make it easy to build compilers, optimizers, Just-In-Time
 code generators, and many other compiler-related programs. LLVM
 uses a single, language-independent virtual instruction set both
 as an offline code representation (to communicate code between
 compiler phases and to run-time systems) and as the compiler internal
 representation (to analyze and transform programs). This persistent
 code representation allows a common set of sophisticated compiler
 techniques to be applied at compile-time, link-time, install-time,
 run-time, or "idle-time" (between program runs).
 .
 This package contains all documentation (extensive).

llvm-3.0-examples: Low-Level Virtual Machine (LLVM), examples

 The Low-Level Virtual Machine (LLVM) is a collection of libraries and
 tools that make it easy to build compilers, optimizers, Just-In-Time
 code generators, and many other compiler-related programs. LLVM
 uses a single, language-independent virtual instruction set both
 as an offline code representation (to communicate code between
 compiler phases and to run-time systems) and as the compiler internal
 representation (to analyze and transform programs). This persistent
 code representation allows a common set of sophisticated compiler
 techniques to be applied at compile-time, link-time, install-time,
 run-time, or "idle-time" (between program runs).
 .
 This package contains examples for using LLVM, both in developing
 extensions to LLVM and in using it to compile code.

llvm-3.0-runtime: Low-Level Virtual Machine (LLVM), bytecode interpreter

 The Low-Level Virtual Machine (LLVM) is a collection of libraries and
 tools that make it easy to build compilers, optimizers, Just-In-Time
 code generators, and many other compiler-related programs. LLVM
 uses a single, language-independent virtual instruction set both
 as an offline code representation (to communicate code between
 compiler phases and to run-time systems) and as the compiler internal
 representation (to analyze and transform programs). This persistent
 code representation allows a common set of sophisticated compiler
 techniques to be applied at compile-time, link-time, install-time,
 run-time, or "idle-time" (between program runs).
 .
 This package provides the minimal required to execute programs in LLVM
 format.

llvm-3.0-source: Low-Level Virtual Machine (LLVM), source code

 The Low-Level Virtual Machine (LLVM) is a collection of libraries and
 tools that make it easy to build compilers, optimizers, Just-In-Time
 code generators, and many other compiler-related programs. LLVM
 uses a single, language-independent virtual instruction set both
 as an offline code representation (to communicate code between
 compiler phases and to run-time systems) and as the compiler internal
 representation (to analyze and transform programs). This persistent
 code representation allows a common set of sophisticated compiler
 techniques to be applied at compile-time, link-time, install-time,
 run-time, or "idle-time" (between program runs).
 .
 This package contains the llvm source code.