NLO terminate process due to "ajob1 2 F 0 launch ends with non zero status: 1. Stop all computation"

Asked by nur

Hi all,

I tried to generate NLO process p p > h mu+ mu- [QCD] and it give error at the middle of run.
Here is the error:
 Exception : program /home/nuha/MG5_aMC_v2_3_0/buang/SubProcesses/P0_ddx_hmupmum/ajob1 2 F 0 launch ends with non zero status: 1. Stop all computation

Here is the details of file run_02_tag_1_debug.log:

#************************************************************
#* MadGraph5_aMC@NLO *
#* *
#* * * *
#* * * * * *
#* * * * * 5 * * * * *
#* * * * * *
#* * * *
#* *
#* *
#* VERSION 2.3.0 2015-07-01 *
#* *
#* The MadGraph5_aMC@NLO Development Team - Find us at *
#* https://server06.fynu.ucl.ac.be/projects/madgraph *
#* and *
#* http://amcatnlo.cern.ch *
#* *
#************************************************************
#* *
#* Command File for aMCatNLO *
#* *
#* run as ./bin/aMCatNLO.py filename *
#* *
#************************************************************
launch auto
Traceback (most recent call last):
  File "/home/nuha/MG5_aMC_v2_3_0/madgraph/interface/extended_cmd.py", line 879, in onecmd
    return self.onecmd_orig(line, **opt)
  File "/home/nuha/MG5_aMC_v2_3_0/madgraph/interface/extended_cmd.py", line 872, in onecmd_orig
    return func(arg, **opt)
  File "/home/nuha/MG5_aMC_v2_3_0/madgraph/interface/amcatnlo_run_interface.py", line 1203, in do_launch
    evt_file = self.run(mode, options)
  File "/home/nuha/MG5_aMC_v2_3_0/madgraph/interface/amcatnlo_run_interface.py", line 1564, in run
    self.run_all(job_dict, [['2', 'F', '%d' % i]], status, split_jobs = split)
  File "/home/nuha/MG5_aMC_v2_3_0/madgraph/interface/amcatnlo_run_interface.py", line 3307, in run_all
    self.wait_for_complete(run_type)
  File "/home/nuha/MG5_aMC_v2_3_0/madgraph/interface/amcatnlo_run_interface.py", line 3271, in wait_for_complete
    self.cluster.wait(self.me_dir, update_status)
  File "/home/nuha/MG5_aMC_v2_3_0/madgraph/various/cluster.py", line 777, in wait
    raise Exception, self.fail_msg
Exception: program /home/nuha/MG5_aMC_v2_3_0/buang/SubProcesses/P0_ddx_hmupmum/ajob1 2 F 0 launch ends with non zero status: 1. Stop all computation
Value of current Options:
              text_editor : None
                    pjfry : None
       cluster_local_path : /cvmfs/cp3.uclouvain.be/madgraph/
       group_subprocesses : Auto
ignore_six_quark_processes : False
    loop_optimized_output : True
    cluster_status_update : (600, 30)
             pythia8_path : None
                hwpp_path : None
                    golem : None
          pythia-pgs_path : None
                  td_path : /home/nuha/MG5_aMC_v2_3_0/td
             delphes_path : None
              thepeg_path : None
             cluster_type : condor
      exrootanalysis_path : /home/nuha/MG5_aMC_v2_3_0/ExRootAnalysis
                      OLP : MadLoop
                 applgrid : applgrid-config
               eps_viewer : None
                  fastjet : None
                 run_mode : 2
              web_browser : None
   automatic_html_opening : False
        cluster_temp_path : None
             cluster_size : 100
            cluster_queue : None
             syscalc_path : None
         madanalysis_path : /home/nuha/MG5_aMC_v2_3_0/MadAnalysis
                   lhapdf : lhapdf-config
             stdout_level : 20
               hepmc_path : None
                  amcfast : amcfast-config
       cluster_retry_wait : 300
      output_dependencies : external
         fortran_compiler : None
                  nb_core : 4
         loop_color_flows : False
              auto_update : 7
         cluster_nb_retry : 1
                 mg5_path : /home/nuha/MG5_aMC_v2_3_0
                  timeout : 60
                    gauge : unitary
      complex_mass_scheme : False
             cpp_compiler : None
   max_npoint_for_channel : 0
#************************************************************
#* MadGraph5_aMC@NLO *
#* *
#* * * *
#* * * * * *
#* * * * * 5 * * * * *
#* * * * * *
#* * * *
#* *
#* *
#* VERSION 2.3.0 2015-07-01 *
#* *
#* The MadGraph5_aMC@NLO Development Team - Find us at *
#* https://server06.fynu.ucl.ac.be/projects/madgraph *
#* *
#************************************************************
#* *
#* Command File for MadGraph5_aMC@NLO *
#* *
#* run as ./bin/mg5_aMC filename *
#* *
#************************************************************
set group_subprocesses Auto
set ignore_six_quark_processes False
set loop_color_flows False
set gauge unitary
set complex_mass_scheme False
set max_npoint_for_channel 0
import model sm
define p = g u c d s u~ c~ d~ s~
define j = g u c d s u~ c~ d~ s~
define l+ = e+ mu+
define l- = e- mu-
define vl = ve vm vt
define vl~ = ve~ vm~ vt~
import model loop_sm
generate p p > h mu+ mu- [QCD]
output buang
######################################################################
## PARAM_CARD AUTOMATICALY GENERATED BY MG5 FOLLOWING UFO MODEL ####
######################################################################
## ##
## Width set on Auto will be computed following the information ##
## present in the decay.py files of the model. ##
## See arXiv:1402.1178 for more details. ##
## ##
######################################################################

###################################
## INFORMATION FOR LOOP
###################################
Block loop
    1 9.118800e+01 # MU_R

###################################
## INFORMATION FOR MASS
###################################
Block mass
    5 4.700000e+00 # MB
    6 1.730000e+02 # MT
   15 1.777000e+00 # MTA
   23 9.118800e+01 # MZ
   25 1.250000e+02 # MH
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
  1 0.000000 # d : 0.0
  2 0.000000 # u : 0.0
  3 0.000000 # s : 0.0
  4 0.000000 # c : 0.0
  11 0.000000 # e- : 0.0
  12 0.000000 # ve : 0.0
  13 0.000000 # mu- : 0.0
  14 0.000000 # vm : 0.0
  16 0.000000 # vt : 0.0
  21 0.000000 # g : 0.0
  22 0.000000 # a : 0.0
  24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2)))

###################################
## INFORMATION FOR SMINPUTS
###################################
Block sminputs
    1 1.325070e+02 # aEWM1
    2 1.166390e-05 # Gf
    3 1.180000e-01 # aS

###################################
## INFORMATION FOR YUKAWA
###################################
Block yukawa
    5 4.700000e+00 # ymb
    6 1.730000e+02 # ymt
   15 1.777000e+00 # ymtau

###################################
## INFORMATION FOR DECAY
###################################
DECAY 6 1.491500e+00 # WT
DECAY 23 2.441404e+00 # WZ
DECAY 24 2.047600e+00 # WW
DECAY 25 6.382339e-03 # WH
## Dependent parameters, given by model restrictions.
## Those values should be edited following the
## analytical expression. MG5 ignores those values
## but they are important for interfacing the output of MG5
## to external program such as Pythia.
DECAY 1 0.000000 # d : 0.0
DECAY 2 0.000000 # u : 0.0
DECAY 3 0.000000 # s : 0.0
DECAY 4 0.000000 # c : 0.0
DECAY 5 0.000000 # b : 0.0
DECAY 11 0.000000 # e- : 0.0
DECAY 12 0.000000 # ve : 0.0
DECAY 13 0.000000 # mu- : 0.0
DECAY 14 0.000000 # vm : 0.0
DECAY 15 0.000000 # ta- : 0.0
DECAY 16 0.000000 # vt : 0.0
DECAY 21 0.000000 # g : 0.0
DECAY 22 0.000000 # a : 0.0
#***********************************************************************
# MadGraph5_aMC@NLO *
# *
# run_card.dat aMC@NLO *
# *
# This file is used to set the parameters of the run. *
# *
# Some notation/conventions: *
# *
# Lines starting with a hash (#) are info or comments *
# *
# mind the format: value = variable ! comment *
#***********************************************************************
#
#*******************
# Running parameters
#*******************
#
#***********************************************************************
# Tag name for the run (one word) *
#***********************************************************************
  tag_1 = run_tag ! name of the run
#***********************************************************************
# Number of LHE events (and their normalization) and the required *
# (relative) accuracy on the Xsec. *
# These values are ignored for fixed order runs *
#***********************************************************************
 500 = nevents ! Number of unweighted events requested
 -1.0 = req_acc ! Required accuracy (-1=auto determined from nevents)
 -1 = nevt_job! Max number of events per job in event generation.
                 ! (-1= no split).
#***********************************************************************
# Normalize the weights of LHE events such that they sum or average to *
# the total cross section *
#***********************************************************************
 average = event_norm ! average or sum
#***********************************************************************
# Number of points per itegration channel (ignored for aMC@NLO runs) *
#***********************************************************************
 0.01 = req_acc_FO ! Required accuracy (-1=ignored, and use the
                     ! number of points and iter. below)
# These numbers are ignored except if req_acc_FO is equal to -1
 5000 = npoints_FO_grid ! number of points to setup grids
 4 = niters_FO_grid ! number of iter. to setup grids
 10000 = npoints_FO ! number of points to compute Xsec
 6 = niters_FO ! number of iter. to compute Xsec
#***********************************************************************
# Random number seed *
#***********************************************************************
 0 = iseed ! rnd seed (0=assigned automatically=default))
#***********************************************************************
# Collider type and energy *
#***********************************************************************
 1 = lpp1 ! beam 1 type (0 = no PDF)
 1 = lpp2 ! beam 2 type (0 = no PDF)
 6500 = ebeam1 ! beam 1 energy in GeV
 6500 = ebeam2 ! beam 2 energy in GeV
#***********************************************************************
# PDF choice: this automatically fixes also alpha_s(MZ) and its evol. *
#***********************************************************************
 cteq6_m = pdlabel ! PDF set
 244600 = lhaid ! if pdlabel=lhapdf, this is the lhapdf number
#***********************************************************************
# Include the NLO Monte Carlo subtr. terms for the following parton *
# shower (HERWIG6 | HERWIGPP | PYTHIA6Q | PYTHIA6PT | PYTHIA8) *
# WARNING: PYTHIA6PT works only for processes without FSR!!!! *
#***********************************************************************
  HERWIG6 = parton_shower
#***********************************************************************
# Renormalization and factorization scales *
# (Default functional form for the non-fixed scales is the sum of *
# the transverse masses of all final state particles and partons. This *
# can be changed in SubProcesses/set_scales.f) *
#***********************************************************************
 False = fixed_ren_scale ! if .true. use fixed ren scale
 False = fixed_fac_scale ! if .true. use fixed fac scale
 91.118 = muR_ref_fixed ! fixed ren reference scale
 91.118 = muF1_ref_fixed ! fixed fact reference scale for pdf1
 91.118 = muF2_ref_fixed ! fixed fact reference scale for pdf2
 -1 = dynamical_scale_choice ! Select one of the preselect dynamical choice
#***********************************************************************
# Renormalization and factorization scales (advanced and NLO options) *
#***********************************************************************
 False = fixed_QES_scale ! if .true. use fixed Ellis-Sexton scale
 91.118 = QES_ref_fixed ! fixed Ellis-Sexton reference scale
 1.0 = muR_over_ref ! ratio of current muR over reference muR
 1.0 = muF1_over_ref ! ratio of current muF1 over reference muF1
 1.0 = muF2_over_ref ! ratio of current muF2 over reference muF2
 1.0 = QES_over_ref ! ratio of current QES over reference QES
#***********************************************************************
# Reweight flags to get scale dependence and PDF uncertainty *
# For scale dependence: factor rw_scale_up/down around central scale *
# For PDF uncertainty: use LHAPDF with supported set *
#***********************************************************************
 True = reweight_scale ! reweight to get scale dependence
 0.5 = rw_Rscale_down ! lower bound for ren scale variations
 2.0 = rw_Rscale_up ! upper bound for ren scale variations
 0.5 = rw_Fscale_down ! lower bound for fact scale variations
 2.0 = rw_Fscale_up ! upper bound for fact scale variations
 False = reweight_PDF ! reweight to get PDF uncertainty
 244601 = PDF_set_min ! First of the error PDF sets
 244700 = PDF_set_max ! Last of the error PDF sets
#***********************************************************************
# ickkw parameter: *
# 0: No merging *
# 3: FxFx Merging - WARNING! Applies merging only at the hard-event *
# level. After showering an MLM-type merging should be applied as *
# well. See http://amcatnlo.cern.ch/FxFx_merging.htm for details. *
# 4: UNLOPS merging (with pythia8 only). No interface from within *
# MG5_aMC available, but available in Pythia8. *
# -1: NNLL+NLO jet-veto computation. See arxiv:1412.8408 [hep-ph]. *
#***********************************************************************
 0 = ickkw
#***********************************************************************
#
#***********************************************************************
# BW cutoff (M+/-bwcutoff*Gamma) *
#***********************************************************************
 15.0 = bwcutoff
#***********************************************************************
# Cuts on the jets *
# Jet clustering is performed by FastJet.
# When matching to a parton shower, these generation cuts should be *
# considerably softer than the analysis cuts. *
# (more specific cuts can be specified in SubProcesses/cuts.f) *
#***********************************************************************
 1.0 = jetalgo ! FastJet jet algorithm (1=kT, 0=C/A, -1=anti-kT)
 0.7 = jetradius ! The radius parameter for the jet algorithm
 10.0 = ptj ! Min jet transverse momentum
 -1.0 = etaj ! Max jet abs(pseudo-rap) (a value .lt.0 means no cut)
#***********************************************************************
# Cuts on the charged leptons (e+, e-, mu+, mu-, tau+ and tau-) *
# (more specific gen cuts can be specified in SubProcesses/cuts.f) *
#***********************************************************************
  0.0 = ptl ! Min lepton transverse momentum
  -1.0 = etal ! Max lepton abs(pseudo-rap) (a value .lt.0 means no cut)
  0.0 = drll ! Min distance between opposite sign lepton pairs
  0.0 = drll_sf ! Min distance between opp. sign same-flavor lepton pairs
  0.0 = mll ! Min inv. mass of all opposite sign lepton pairs
  30.0 = mll_sf ! Min inv. mass of all opp. sign same-flavor lepton pairs
#***********************************************************************
# Photon-isolation cuts, according to hep-ph/9801442 *
# When ptgmin=0, all the other parameters are ignored *
#***********************************************************************
  20.0 = ptgmin ! Min photon transverse momentum
  -1.0 = etagamma ! Max photon abs(pseudo-rap)
  0.4 = R0gamma ! Radius of isolation code
  1.0 = xn ! n parameter of eq.(3.4) in hep-ph/9801442
  1.0 = epsgamma ! epsilon_gamma parameter of eq.(3.4) in hep-ph/9801442
  True = isoEM ! isolate photons from EM energy (photons and leptons)
#***********************************************************************
# Maximal PDG code for quark to be considered a jet when applying cuts.*
# At least all massless quarks of the model should be included here. *
#***********************************************************************
 4 = maxjetflavor
#***********************************************************************
# For aMCfast+APPLGRID use in PDF fitting (http://amcfast.hepforge.org)*
#***********************************************************************
 0 = iappl ! aMCfast switch (0=OFF, 1=prepare APPLgrids, 2=fill grids)
#***********************************************************************

Thanks

Question information

Language:
English Edit question
Status:
Solved
For:
MadGraph5_aMC@NLO Edit question
Assignee:
Rikkert Frederix Edit question
Solved by:
Rikkert Frederix
Solved:
Last query:
Last reply:
Revision history for this message
Rikkert Frederix (frederix) said :
#1

Hello,

What are the contents of the

/home/nuha/MG5_aMC_v2_3_0/buang/SubProcesses/P0_ddx_hmupmum/GF1/log.txt

file? If it doesn't exist, are there any other

/home/nuha/MG5_aMC_v2_3_0/buang/SubProcesses/P*/G*/log.txt

files? Do they have anything suspicious?

Best regards,
Rikkert

Revision history for this message
nur (nur-zulaiha9105) said :
#2

Hi,

Here is the log.txt from GF1:

 ===============================================================
 INFO: MadFKS read these parameters from FKS_params.dat
 ===============================================================
  > IRPoleCheckThreshold = 1.0000000000000001E-005
  > PrecisionVirtualAtRunTime = 1.0000000000000000E-003
  > NHelForMCoverHels = 4
  > VirtualFraction = 1.0000000000000000
  > MinVirtualFraction = 5.0000000000000001E-003
 ===============================================================
 A PDF is used, so alpha_s(MZ) is going to be modified
 Old value of alpha_s from param_card: 0.11799999999999999
 New value of alpha_s from PDF cteq6_m: 0.11799999999999999
 *****************************************************
 * MadGraph/MadEvent *
 * -------------------------------- *
 * http://madgraph.hep.uiuc.edu *
 * http://madgraph.phys.ucl.ac.be *
 * http://madgraph.roma2.infn.it *
 * -------------------------------- *
 * *
 * PARAMETER AND COUPLING VALUES *
 * *
 *****************************************************

  External Params
  ---------------------------------

 MU_R = 91.188000000000002
 aEWM1 = 132.50700000000001
 mdl_Gf = 1.1663900000000000E-005
 aS = 0.11799999999999999
 mdl_ymb = 4.7000000000000002
 mdl_ymt = 173.00000000000000
 mdl_ymtau = 1.7769999999999999
 mdl_MT = 173.00000000000000
 mdl_MB = 4.7000000000000002
 mdl_MZ = 91.188000000000002
 mdl_MH = 125.00000000000000
 mdl_MTA = 1.7769999999999999
 mdl_WT = 1.4915000000000000
 mdl_WZ = 2.4414039999999999
 mdl_WW = 2.0476000000000001
 mdl_WH = 6.3823389999999999E-003
  Internal Params
  ---------------------------------

 mdl_conjg__CKM3x3 = 1.0000000000000000
 mdl_CKM22 = 1.0000000000000000
 mdl_lhv = 1.0000000000000000
 mdl_CKM3x3 = 1.0000000000000000
 mdl_conjg__CKM22 = 1.0000000000000000
 mdl_conjg__CKM33 = 1.0000000000000000
 mdl_Ncol = 3.0000000000000000
 mdl_CA = 3.0000000000000000
 mdl_TF = 0.50000000000000000
 mdl_CF = 1.3333333333333333
 mdl_complexi = ( 0.0000000000000000 , 1.0000000000000000 )
 mdl_MZ__exp__2 = 8315.2513440000002
 mdl_MZ__exp__4 = 69143404.913893804
 mdl_sqrt__2 = 1.4142135623730951
 mdl_MH__exp__2 = 15625.000000000000
 mdl_Ncol__exp__2_m_1 = 8.0000000000000000
 mdl_MB__exp__2 = 22.090000000000003
 mdl_MT__exp__2 = 29929.000000000000
 mdl_Ncol__exp__2_m_1_0 = 8.0000000000000000
 mdl_aEW = 7.5467711139788835E-003
 mdl_MW = 80.419002445756163
 mdl_sqrt__aEW = 8.6872153846781555E-002
 mdl_ee = 0.30795376724436879
 mdl_MW__exp__2 = 6467.2159543705357
 mdl_sw2 = 0.22224648578577766
 mdl_cw = 0.88190334743339216
 mdl_sqrt__sw2 = 0.47143025548407230
 mdl_sw = 0.47143025548407230
 mdl_g1 = 0.34919219678733299
 mdl_gw = 0.65323293034757990
 mdl_v = 246.21845810181637
 mdl_v__exp__2 = 60623.529110035903
 mdl_lam = 0.12886910601690263
 mdl_yb = 2.6995554250465490E-002
 mdl_yt = 0.99366614581500623
 mdl_ytau = 1.0206617000654717E-002
 mdl_muH = 88.388347648318430
 mdl_AxialZUp = -0.18517701861793787
 mdl_AxialZDown = 0.18517701861793787
 mdl_VectorZUp = 7.5430507588273299E-002
 mdl_VectorZDown = -0.13030376310310560
 mdl_VectorAUp = 0.20530251149624587
 mdl_VectorADown = -0.10265125574812294
 mdl_VectorWmDxU = 0.23095271737156670
 mdl_AxialWmDxU = -0.23095271737156670
 mdl_VectorWpUxD = 0.23095271737156670
 mdl_AxialWpUxD = -0.23095271737156670
 mdl_I1x33 = ( 2.6995554250465490E-002, 0.0000000000000000 )
 mdl_I2x33 = ( 0.99366614581500623 , 0.0000000000000000 )
 mdl_I3x33 = ( 0.99366614581500623 , 0.0000000000000000 )
 mdl_I4x33 = ( 2.6995554250465490E-002, 0.0000000000000000 )
 mdl_Vector_tbGp = (-0.96667059156454072 , 0.0000000000000000 )
 mdl_Axial_tbGp = ( -1.0206617000654716 , -0.0000000000000000 )
 mdl_Vector_tbGm = ( 0.96667059156454072 , 0.0000000000000000 )
 mdl_Axial_tbGm = ( -1.0206617000654716 , -0.0000000000000000 )
 mdl_gw__exp__2 = 0.42671326129048615
 mdl_cw__exp__2 = 0.77775351421422245
 mdl_ee__exp__2 = 9.4835522759998875E-002
 mdl_sw__exp__2 = 0.22224648578577769
 mdl_yb__exp__2 = 7.2875994928982540E-004
 mdl_yt__exp__2 = 0.98737240933884918
  Internal Params evaluated point by point
  ----------------------------------------

 mdl_MU_R__exp__2 = 8315.2513440000002
 mdl_sqrt__aS = 0.34351128074635334
 mdl_G__exp__2 = 1.4828317324943823
 mdl_G__exp__3 = 1.8056676068262196
 mdl_G__exp__4 = 2.1987899468922913
  Couplings of loop_sm
  ---------------------------------

    R2_DDZ_V2 = 0.00000E+00 0.72127E-02
    R2_UUZ_V2 = -0.00000E+00 -0.72127E-02
    R2_UUZ_V5 = 0.00000E+00 0.68702E-03
         GC_5 = 0.00000E+00 0.12177E+01
        GC_21 = -0.00000E+00 -0.28804E+00
        GC_22 = 0.00000E+00 0.28804E+00
        GC_23 = -0.00000E+00 -0.27437E-01
        GC_24 = 0.00000E+00 0.82310E-01
        GC_32 = 0.00000E+00 0.67544E+02

 Collider parameters:
 --------------------

 Running at P P machine @ 13000.000000000000 GeV
 PDF set = cteq6_m
 alpha_s(Mz)= 0.1180 running at 2 loops.
 alpha_s(Mz)= 0.1180 running at 2 loops.
 Renormalization scale set on event-by-event basis
 Factorization scale set on event-by-event basis

 Diagram information for clustering has been set-up for nFKSprocess 1
 Diagram information for clustering has been set-up for nFKSprocess 2
 Diagram information for clustering has been set-up for nFKSprocess 3
 Diagram information for clustering has been set-up for nFKSprocess 4
 getting user params
Enter number of events and iterations:
 Number of events and iterations -1 12
Enter desired fractional accuracy:
 Desired fractional accuracy: 2.9999999999999999E-002
 Enter alpha, beta for G_soft
   Enter alpha<0 to set G_soft=1 (no ME soft)
 for G_soft: alpha= 1.0000000000000000 , beta= -0.10000000000000001
 Enter alpha, beta for G_azi
   Enter alpha>0 to set G_azi=0 (no azi corr)
 for G_azi: alpha= -1.0000000000000000 , beta= -0.10000000000000001
 Doing the S and H events together
Suppress amplitude (0 no, 1 yes)?
 Using suppressed amplitude.
Exact helicity sum (0 yes, n = number/event)?
 Summing over 1 helicities/event for virt
Enter Configuration Number:
Running Configuration Number: 1
Enter running mode for MINT:
0 to set-up grids, 1 to integrate, 2 to generate events
 MINT running mode: 0
Set the three folding parameters for MINT
xi_i, phi_i, y_ij
           1 1 1
 'all ', 'born', 'real', 'virt', 'novi' or 'grid'?
 Enter 'born0' or 'virt0' to perform
  a pure n-body integration (no S functions)
 doing the all of this channel
 Normal integration (Sfunction != 1)
 Not subdividing B.W.
 about to integrate 10 -1 12 1
 imode is 0
 ------- iteration 1
 Update # PS points (even): 800 --> 800
Using random seed offsets: 1 , 2 , 0
  with seed 34
 Ranmar initialization seeds 13168 9410
 Total number of FKS directories is 4
 FKS process map (sum= 3 ) :
           1 --> 2 : 1 3
           2 --> 2 : 2 4
 ================================
 process combination map (specified per FKS dir):
  1 map 1 2
  1 inv. map 1 2
  2 map 1 2
  2 inv. map 1 2
  3 map 1 2
  3 inv. map 1 2
  4 map 1 2
  4 inv. map 1 2
 ================================
nFKSprocess: 1. Absolute lower bound for tau at the Born is 0.92456E-04 0.12500E+03 0.13000E+05
nFKSprocess: 1. Lower bound for tau is 0.14216E-03 0.15500E+03 0.13000E+05
nFKSprocess: 1. Lower bound for tau is (taking resonances into account) 0.27655E-03 0.21619E+03 0.13000E+05
nFKSprocess: 2. Absolute lower bound for tau at the Born is 0.92456E-04 0.12500E+03 0.13000E+05
nFKSprocess: 2. Lower bound for tau is 0.14216E-03 0.15500E+03 0.13000E+05
nFKSprocess: 2. Lower bound for tau is (taking resonances into account) 0.27655E-03 0.21619E+03 0.13000E+05
nFKSprocess: 3. Absolute lower bound for tau at the Born is 0.92456E-04 0.12500E+03 0.13000E+05
nFKSprocess: 3. Lower bound for tau is 0.14216E-03 0.15500E+03 0.13000E+05
nFKSprocess: 3. Lower bound for tau is (taking resonances into account) 0.27655E-03 0.21619E+03 0.13000E+05
nFKSprocess: 4. Absolute lower bound for tau at the Born is 0.92456E-04 0.12500E+03 0.13000E+05
nFKSprocess: 4. Lower bound for tau is 0.14216E-03 0.15500E+03 0.13000E+05
nFKSprocess: 4. Lower bound for tau is (taking resonances into account) 0.27655E-03 0.21619E+03 0.13000E+05
 bpower is 0.0000000000000000
 Scale values (may change event by event):
 muR, muR_reference: 0.172774D+03 0.172774D+03 1.00
 muF1, muF1_reference: 0.172774D+03 0.172774D+03 1.00
 muF2, muF2_reference: 0.172774D+03 0.172774D+03 1.00
 QES, QES_reference: 0.172774D+03 0.172774D+03 1.00

 muR_reference [functional form]:
    H_T/2 := sum_i mT(i)/2, i=final state
 muF1_reference [functional form]:
    H_T/2 := sum_i mT(i)/2, i=final state
 muF2_reference [functional form]:
    H_T/2 := sum_i mT(i)/2, i=final state
 QES_reference [functional form]:
    H_T/2 := sum_i mT(i)/2, i=final state

 alpha_s= 0.10764716723080080
 alpha_s value used for the virtuals is (for the first PS point): 0.10764716723080080
  ==========================================================================================
 { }
 {   }
 {  ,,  }
 { `7MMM. ,MMF' `7MM `7MMF'  }
 {  MMMb dPMM MM MM  }
 {  M YM ,M MM ,6"Yb. ,M""bMM MM ,pW"Wq. ,pW"Wq.`7MMpdMAo.  }
 {  M Mb M' MM 8) MM ,AP MM MM 6W' `Wb 6W' `Wb MM `Wb  }
 {  M YM.P' MM ,pm9MM 8MI MM MM , 8M M8 8M M8 MM M8  }
 {  M `YM' MM 8M MM `Mb MM MM ,M YA. ,A9 YA. ,A9 MM ,AP  }
 { .JML. `' .JMML.`Moo9^Yo.`Wbmd"MML..JMMmmmmMMM `Ybmd9' `Ybmd9' MMbmmd'  }
 {  MM  }
 {  .JMML.  }
 { v2.3.0 (2015-07-01), Ref: arXiv:1103.0621v2, arXiv:1405.0301  }
 {   }
 { }
  ==========================================================================================
 ===============================================================
 INFO: MadLoop read these parameters from ../MadLoop5_resources/MadLoopParams.dat
 ===============================================================
  > MLReductionLib = 1|4|3|2
  > IREGIMODE = 2
  > IREGIRECY = T
  > CTModeRun = -1
  > MLStabThres = 1.0000000000000000E-003
  > NRotations_DP = 1
  > NRotations_QP = 0
  > CTStabThres = 1.0000000000000000E-002
  > CTLoopLibrary = 2
  > CTModeInit = 1
  > CheckCycle = 3
  > MaxAttempts = 10
  > UseLoopFilter = F
  > HelicityFilterLevel = 2
  > ImprovePSPoint = 2
  > DoubleCheckHelicityFilter = T
  > LoopInitStartOver = F
  > HelInitStartOver = F
  > ZeroThres = 1.0000000000000001E-009
  > OSThres = 1.0000000000000000E-008
  > WriteOutFilters = T
 ===============================================================

------------------------------------------------------------------------
| You are using CutTools - Version 1.9.3 |
| Authors: G. Ossola, C. Papadopoulos, R. Pittau |
| Published in JHEP 0803:042,2008 |
| http://www.ugr.es/~pittau/CutTools |
| |
| Compiler with 34 significant digits detetected |
 ----------------------------------------------------------------------

########################################################################
# #
# You are using OneLOop-3.6 #
# #
# for the evaluation of 1-loop scalar 1-, 2-, 3- and 4-point functions #
# #
# author: Andreas van Hameren <email address hidden> #
# date: 18-02-2015 #
# #
# Please cite #
# A. van Hameren, #
# Comput.Phys.Commun. 182 (2011) 2427-2438, arXiv:1007.4716 #
# A. van Hameren, C.G. Papadopoulos and R. Pittau, #
# JHEP 0909:106,2009, arXiv:0903.4665 #
# in publications with results obtained with the help of this program. #
# #
########################################################################
 ---- POLES CANCELLED ----
ABS integral = 0.1178E+03 +/- 0.4788E+02 ( 40.643 %)
Integral = -.7673E+02 +/- 0.4734E+02 ( 61.702 %)
Virtual = 0.2779E+00 +/- 0.5442E-01 ( 19.580 %)
Virtual ratio = 0.5232E+01 +/- 0.2306E-01 ( 0.441 %)
ABS virtual = 0.2779E+00 +/- 0.5442E-01 ( 19.580 %)
Born*ao2pi = 0.5249E-01 +/- 0.1036E-01 ( 19.742 %)
Chi^2 per d.o.f. 0.0000E+00
accumulated results ABS integral = 0.1178E+03 +/- 0.4788E+02 ( 40.643 %)
accumulated results Integral = -.7673E+02 +/- 0.4734E+02 ( 61.702 %)
accumulated results Virtual = 0.2779E+00 +/- 0.5442E-01 ( 19.580 %)
accumulated results Virtual ratio = 0.5232E+01 +/- 0.2306E-01 ( 0.441 %)
accumulated results ABS virtual = 0.2779E+00 +/- 0.5442E-01 ( 19.580 %)
accumulated results Born*ao2pi = 0.5249E-01 +/- 0.1036E-01 ( 19.742 %)
accumulated result Chi^2 per DoF = 0.0000E+00
update virtual fraction to: 0.250 5.295
  1: 0 1 2
 ------- iteration 2
 Update # PS points (even): 1600 --> 1600
ABS integral = 0.9918E+02 +/- 0.2267E+02 ( 22.854 %)
Integral = 0.4574E+02 +/- 0.2245E+02 ( 49.086 %)
Virtual = 0.7857E-02 +/- 0.3848E-02 ( 48.980 %)
Virtual ratio = 0.5258E+01 +/- 0.2393E-01 ( 0.455 %)
ABS virtual = 0.1080E-01 +/- 0.3846E-02 ( 35.613 %)
Born*ao2pi = 0.6292E-01 +/- 0.2104E-01 ( 33.442 %)
Chi^2= 0.6960E-01
accumulated results ABS integral = 0.1052E+03 +/- 0.2049E+02 ( 19.481 %)
accumulated results Integral = 0.6344E+01 +/- 0.2029E+02 ( 319.788 %)
accumulated results Virtual = 0.2569E-01 +/- 0.3839E-02 ( 14.940 %)
accumulated results Virtual ratio = 0.5244E+01 +/- 0.1661E-01 ( 0.317 %)
accumulated results ABS virtual = 0.2843E-01 +/- 0.3836E-02 ( 13.493 %)
accumulated results Born*ao2pi = 0.5593E-01 +/- 0.9297E-02 ( 16.621 %)
accumulated result Chi^2 per DoF = 0.6960E-01
update virtual fraction to: 0.062 5.389
  1: 0 1 2
 ------- iteration 3
 Update # PS points (even): 3200 --> 3072
ABS integral = 0.3172E+03 +/- 0.1700E+03 ( 53.599 %)
Integral = 0.1784E+01 +/- 0.1651E+02 ( 925.422 %)
Virtual = -.2700E-02 +/- 0.2464E-02 ( 91.254 %)
Virtual ratio = 0.5123E+01 +/- 0.9359E-01 ( 1.827 %)
ABS virtual = 0.5692E-02 +/- 0.2463E-02 ( 43.274 %)
Born*ao2pi = 0.2016E-01 +/- 0.6432E-02 ( 31.907 %)
Chi^2= 0.1239E+01
accumulated results ABS integral = 0.1280E+03 +/- 0.2034E+02 ( 15.895 %)
accumulated results Integral = 0.3830E+01 +/- 0.1280E+02 ( 334.345 %)
accumulated results Virtual = 0.8400E-02 +/- 0.2073E-02 ( 24.685 %)
accumulated results Virtual ratio = 0.5226E+01 +/- 0.1635E-01 ( 0.313 %)
accumulated results ABS virtual = 0.1458E-01 +/- 0.2073E-02 ( 14.213 %)
accumulated results Born*ao2pi = 0.3479E-01 +/- 0.5289E-02 ( 15.205 %)
accumulated result Chi^2 per DoF = 0.6542E+00
update virtual fraction to: 0.016 5.261
  1: 0 1 2
STOP 1
 ------- iteration 4
 Update # PS points (even): 6400 --> 6144
 ERROR: inconsistent integrals #0 0.0000000000000000 1.2569924838314639E-029 1.0000000000000000
Time in seconds: 13

Revision history for this message
nur (nur-zulaiha9105) said :
#3

Hi,

I forgot to tell that it give error when I change the pdf to cteq6_m or cteq6l1. So I generate same process with the default pdf and it works just fine. Would you like to see the log file also?

Revision history for this message
Best Rikkert Frederix (frederix) said :
#4

Hello,

Thanks for the log file. I've understood the problem, which was a too stringent stop statement where it was not needed. There are very large cancelations among terms contributing to the "integrals" which means that sometimes the code flagged as the integrals not being consistent, even though they were.

I've copied the fix here below. Please, let me know if you have troubles applying this fix; if so, please send me an e-mail [rikkert.frederix @ cern.ch] and I'll send you the updated file directly (I don't know how to link files here...)

Best regards,
Rikkert

=== modified file 'Template/NLO/SubProcesses/fks_singular.f'
--- Template/NLO/SubProcesses/fks_singular.f 2015-07-13 09:30:28 +0000
+++ Template/NLO/SubProcesses/fks_singular.f 2015-08-06 14:59:16 +0000
@@ -1976,7 +1976,7 @@
       include 'mint.inc'
       integer i,j,ict
       double precision f(nintegrals),sigint,sigint1,sigint_ABS
- $ ,n1body_wgt,tmp_wgt
+ $ ,n1body_wgt,tmp_wgt,max_weight
       double precision virt_wgt_mint,born_wgt_mint
       common /virt_born_wgt_mint/virt_wgt_mint,born_wgt_mint
       double precision virtual_over_born
@@ -1988,6 +1988,7 @@
       sigint1=0d0
       sigint_ABS=0d0
       n1body_wgt=0d0
+ max_weight=0d0
       if (icontr.eq.0) then
          sigint_ABS=0d0
          sigint=0d0
@@ -1995,25 +1996,41 @@
       else
          do i=1,icontr
             sigint=sigint+wgts(1,i)
+ max_weight=max(max_weight,abs(wgts(1,i)))
             if (icontr_sum(0,i).eq.0) cycle
             do j=1,niproc(i)
                sigint_ABS=sigint_ABS+abs(unwgt(j,i))
                sigint1=sigint1+unwgt(j,i) ! for consistency check
+ max_weight=max(max_weight,abs(unwgt(j,i)))
             enddo
          enddo
-c check the consistency of the results
+c check the consistency of the results up to machine precision (10^-14 here)
          if (imode.ne.1 .or. only_virt) then
- if (abs((sigint-sigint1)/(sigint+sigint1)).gt.1d-3) then
+ if (abs((sigint-sigint1)/max_weight).gt.1d-14) then
                write (*,*) 'ERROR: inconsistent integrals #0',sigint
- $ ,sigint1,abs((sigint-sigint1)/(sigint+sigint1))
+ $ ,sigint1,max_weight,abs((sigint-sigint1)/max_weight)
                stop 1
             endif
          else
             sigint1=sigint1+virt_wgt_mint
- if (abs((sigint-sigint1)/(sigint+sigint1)).gt.1d-3) then
+ if (abs((sigint-sigint1)/max_weight).gt.1d-14) then
                write (*,*) 'ERROR: inconsistent integrals #1',sigint
- $ ,sigint1,abs((sigint-sigint1)/(sigint+sigint1))
+ $ ,sigint1,max_weight,abs((sigint-sigint1)/max_weight)
      $ ,virt_wgt_mint
                stop 1
             endif
          endif

Revision history for this message
nur (nur-zulaiha9105) said :
#5

Hi Rikkert,

Sorry for late reply. I was waited for the run to finish. So, it works. Thanks. However, I'm wonder why it took 1 hour and 51 minutes even though I put only 100 events in the run_card.dat. The total cross section also is very big (135.9 pb). Do you have any idea?

Revision history for this message
nur (nur-zulaiha9105) said :
#6

Thanks Rikkert Frederix, that solved my question.

Revision history for this message
Rikkert Frederix (frederix) said :
#7

Hello,

The computation time is not directly proportional to the number of events you request, because for such small number of events you are dominated by the 'setting of the grids' and the 'computing of the bounding envelope', which are mostly independent from the number of events you require.

About the cross section: there seems to be a bug in the native interface for cteq6_m. Please use either LHAPDF or the default nnpdf23.

Best regards,
Rikkert